Search Results

Now showing 1 - 10 of 89
  • Item
    Time‐Dependent Cation Selectivity of Titanium Carbide MXene in Aqueous Solution
    (Weinheim : Wiley-VCH, 2022) Wang, Lei; Torkamanzadeh, Mohammad; Majed, Ahmad; Zhang, Yuan; Wang, Qingsong; Breitung, Ben; Feng, Guang; Naguib, Michael; Presser, Volker
    Electrochemical ion separation is a promising technology to recover valuable ionic species from water. Pseudocapacitive materials, especially 2D materials, are up-and-coming electrodes for electrochemical ion separation. For implementation, it is essential to understand the interplay of the intrinsic preference of a specific ion (by charge/size), kinetic ion preference (by mobility), and crystal structure changes. Ti3C2Tz MXene is chosen here to investigate its selective behavior toward alkali and alkaline earth cations. Utilizing an online inductively coupled plasma system, it is found that Ti3C2Tz shows a time-dependent selectivity feature. In the early stage of charging (up to about 50 min), K+ is preferred, while ultimately Ca2+ and Mg2+ uptake dominate; this unique phenomenon is related to dehydration energy barriers and the ion exchange effect between divalent and monovalent cations. Given the wide variety of MXenes, this work opens the door to a new avenue where selective ion-separation with MXene can be further engineered and optimized.
  • Item
    Combining Battery‐Type and Pseudocapacitive Charge Storage in Ag/Ti3C2Tx MXene Electrode for Capturing Chloride Ions with High Capacitance and Fast Ion Transport
    (Hoboken, NJ : Wiley, 2020) Liang, Mingxing; Wang, Lei; Presser, Volker; Dai, Xiaohu; Yu, Fei; Ma, Jie
    The recent advances in chloride‐ion capturing electrodes for capacitive deionization (CDI) are limited by the capacity, rate, and stability of desalination. This work introduces Ti3C2Tx/Ag synthesized via a facile oxidation‐reduction method and then uses it as an anode for chloride‐ion capture in CDI. Silver nanoparticles are formed successfully and uniformly distributed with the layered‐structure of Ti3C2Tx. All Ti3C2Tx/Ag samples are hydrophilic, which is beneficial for water desalination. Ti3C2Tx/Ag samples with a low charge transfer resistance exhibit both pseudocapacitive and battery behaviors. Herein, the Ti3C2Tx/Ag electrode with a reaction time of 3 h exhibits excellent desalination performance with a capacity of 135 mg Cl− g−1 at 20 mA g−1 in a 10 × 10−3 m NaCl solution. Furthermore, low energy consumption of 0.42 kWh kg−1 Cl− and a desalination rate of 1.5 mg Cl− g−1 min−1 at 50 mA g−1 is achieved. The Ti3C2Tx/Ag system exhibits fast rate capability, high desalination capacity, low energy consumption, and excellent cyclability, which can be ascribed to the synergistic effect between the battery and pseudocapacitive behaviors of the Ti3C2Tx/Ag hybrid material. This work provides fundamental insight into the coupling of battery and pseudocapacitive behaviors during Cl− capture for electrochemical desalination.
  • Item
    Mechanically Stable, Binder‐Free, and Free‐Standing Vanadium Trioxide/Carbon Hybrid Fiber Electrodes for Lithium‐Ion Batteries
    (Weinheim : Wiley-VCH, 2023) Bornamehr, Behnoosh; Gallei, Markus; Husmann, Samantha; Presser, Volker
    Binder is a crucial component in present-day battery electrodes but commonly contains fluorine and requires coating processing using organic (often toxic) solvents. Preparing binder-free electrodes is an attractive strategy to make battery electrode production and its end-of-use waste greener and safer. Herein, electrospinning is employed to prepare binder-free and self-standing electrodes. Such electrodes often suffer from low flexibility, and the correlation between performance and flexibility is usually overlooked. Processing parameters affect the mechanical properties of the electrodes, and for the first time it is reported that mechanical flexibility directly influences the electrochemical performance of the electrode. The importance is highlighted when processing parameters advantageous to powder materials, such as a higher heat treatment temperature, harm self-standing electrodes due to deterioration of fiber flexibility. Other strategies, such as conductive carbon addition, can be employed to improve the cell performance, but their effect on the mechanical properties of the electrodes must be considered. Rapid heat treatment achieves self-standing V2O3 with a capacity of 250 mAh g−1 at 250 mA g−1 and 390 mAh g−1 at 10 mA g−1
  • Item
    In situ measurements with CPC micro-actuators using SEM
    (Bellingham : SPIE, 2014) Kaasik, Friedrich; Must, Indrek; Lust, Enn; Jürgens, Meelis; Presser, Volker; Punning, Andres; Temmer, Rauno; Kiefer, Rudolf; Aabloo, Alvo
    Comparative measurements of carbon-polymer composite micro-actuators based on room temperature ionic liquid electrolyte were carried out in situ (1) in vacuum using a state-of-the-art scanning electron microscope, (2) in an oxygen-free atmosphere under ambient pressure, and (3) under ambient environment. The fabricated micro-actuators sustained their actuation performance in all three environments, revealing important implications regarding their humidity-dependence. SEM observations demonstrate high stroke actuation of a device with submillimeter length, which is the typical size range of actuators desirable for medical or lab-on-chip applications.
  • Item
    Carbons and electrolytes for advanced supercapacitors
    (Hoboken, NJ : Wiley, 2014) Presser, Volker
    Electrical energy storage (EES) is one of the most critical areas of technological research around the world. Storing and efficiently using electricity generated by intermittent sources and the transition of our transportation fleet to electric drive depend fundamentally on the development of EES systems with high energy and power densities. Supercapacitors are promising devices for highly efficient energy storage and power management, yet they still suffer from moderate energy densities compared to batteries. To establish a detailed understanding of the science and technology of carbon/carbon supercapacitors, this review discusses the basic principles of the electrical double-layer (EDL), especially regarding the correlation between ion size/ion solvation and the pore size of porous carbon electrodes. We summarize the key aspects of various carbon materials synthesized for use in supercapacitors. With the objective of improving the energy density, the last two sections are dedicated to strategies to increase the capacitance by either introducing pseudocapacitive materials or by using novel electrolytes that allow to increasing the cell voltage. In particular, advances in ionic liquids, but also in the field of organic electrolytes, are discussed and electrode mass balancing is expanded because of its importance to create higher performance asymmetric electrochemical capacitors.
  • Item
    Mixed Cu-Fe Sulfides Derived from Polydopamine-Coated Prussian Blue Analogue as a Lithium-Ion Battery Electrode
    (Washington, DC : ACS Publications, 2022) Bornamehr, Behnoosh; Presser, Volker; Husmann, Samantha
    Batteries employing transition-metal sulfides enable high-charge storage capacities, but polysulfide shuttling and volume expansion cause structural disintegration and early capacity fading. The design of heterostructures combining metal sulfides and carbon with an optimized morphology can effectively address these issues. Our work introduces dopamine-coated copper Prussian blue (CuPB) analogue as a template to prepare nanostructured mixed copper-iron sulfide electrodes. The material was prepared by coprecipitation of CuPB with in situ dopamine polymerization, followed by thermal sulfidation. Dopamine controls the particle size and favors K-rich CuPB due to its polymerization mechanism. While the presence of the coating prevents particle agglomeration during thermal sulfidation, its thickness demonstrates a key effect on the electrochemical performance of the derived sulfides. After a two-step activation process during cycling, the C-coated KCuFeS2electrodes showed capacities up to 800 mAh/g at 10 mA/g with nearly 100% capacity recovery after rate handling and a capacity of 380 mAh/g at 250 mA/g after 500 cycles.
  • Item
    Monitoring the thermally induced transition from sp3-hybridized into sp2-hybridized carbons
    (Amsterdam [u.a.] : Elsevier Science, 2021) Schüpfer, Dominique B.; Badaczewski, Felix; Peilstöcker, Jan; Guerra-Castro, Juan Manuel; Shim, Hwirim; Firoozabadi, Saleh; Beyer, Andreas; Volz, Kerstin; Presser, Volker; Heiliger, Christian; Smarsly, Bernd; Klar, Peter J.
    The preparation of carbons for technical applications is typically based on a treatment of a precursor, which is transformed into the carbon phase with the desired structural properties. During such treatment the material passes through several different structural stages, for example, starting from precursor molecules via an amorphous phase into crystalline-like phases. While the structure of non-graphitic and graphitic carbon has been well studied, the transformation stages from molecular to amorphous and non-graphitic carbon are still not fully understood. Disordered carbon often contains a mixture of sp3-, sp2-and sp1-hybridized bonds, whose analysis is difficult to interpret. We systematically address this issue by studying the transformation of purely sp3-hybridized carbons, that is, nanodiamond and adamantane, into sp2-hybridized non-graphitic and graphitic carbon. The precursor materials are thermally treated at different temperatures and the transformation stages are monitored. We employ Raman spectroscopy, WAXS and TEM to characterize the structural changes. We correlate the intensities and positions of the Raman bands with the lateral crystallite size La estimated by WAXS analysis. The behavior of the D and G Raman bands characteristic for sp2-type material formed by transforming the sp3-hybridized precursors into non-graphitic and graphitic carbon agrees well with that observed using sp2-structured precursors.
  • Item
    Effect of pore geometry on ultra-densified hydrogen in microporous carbons
    (Amsterdam [u.a.] : Elsevier Science, 2021) Tian, Mi; Lennox, Matthew J.; O’Malley, Alexander J.; Porter, Alexander J.; Krüner, Benjamin; Rudić, Svemir; Mays, Timothy J.; Düren, Tina; Presser, Volker; Terry, Lui R.; Rols, Stephane; Fang, Yanan; Dong, Zhili; Rochat, Sebastien; Ting, Valeska P.
    Our investigations into molecular hydrogen (H2) confined in microporous carbons with different pore geometries at 77 K have provided detailed information on effects of pore shape on densification of confined H2 at pressures up to 15 MPa. We selected three materials: a disordered, phenolic resin-based activated carbon, a graphitic carbon with slit-shaped pores (titanium carbide-derived carbon), and single-walled carbon nanotubes, all with comparable pore sizes of <1 nm. We show via a combination of in situ inelastic neutron scattering studies, high-pressure H2 adsorption measurements, and molecular modelling that both slit-shaped and cylindrical pores with a diameter of ∼0.7 nm lead to significant H2 densification compared to bulk hydrogen under the same conditions, with only subtle differences in hydrogen packing (and hence density) due to geometric constraints. While pore geometry may play some part in influencing the diffusion kinetics and packing arrangement of hydrogen molecules in pores, pore size remains the critical factor determining hydrogen storage capacities. This confirmation of the effects of pore geometry and pore size on the confinement of molecules is essential in understanding and guiding the development and scale-up of porous adsorbents that are tailored for maximising H2 storage capacities, in particular for sustainable energy applications.
  • Item
    Enhanced electrochemical energy storage by nanoscopic decoration of endohedral and exohedral carbon with vanadium oxide via atomic layer deposition
    (Washington D.C. : American Chemical Society, 2016) Fleischmann, Simon; Jäckel, Nicolas; Zeiger, Marco; Krüner, Benjamin; Grobelsek, Ingrid; Formanek, Petr; Choudhury, Soumyadip; Weingarth, Daniel; Presser, Volker
    Atomic layer deposition (ALD) is a facile process to decorate carbon surfaces with redox-active nanolayers. This is a particularly attractive route to obtain hybrid electrode materials for high performance electrochemical energy storage applications. Using activated carbon and carbon onions as representatives of substrate materials with large internal or external surface area, respectively, we have studied the enhanced energy storage capacity of vanadium oxide coatings. While the internal porosity of activated carbon readily becomes blocked by obstructing nanopores, carbon onions enable the continued deposition of vanadia within their large interparticle voids. Electrochemical benchmarking in lithium perchlorate in acetonitrile (1 M LiClO4) showed a maximum capacity of 122 mAh/g when using vanadia coated activated carbon and 129 mAh/g for vanadia coated carbon onions. There is an optimum amount of vanadia between 50 and 65 wt % for both substrates that results in an ideal balance between redox-activity and electrical conductivity of the hybrid electrode. Assembling asymmetric (charge balanced) full-cells, a maximum specific energy of 38 Wh/kg and 29 Wh/kg was found for carbon onions and activated carbon, respectively. The stability of both systems is promising, with a capacity retention of ∼85–91% after 7000 cycles for full-cell measurements.
  • Item
    New insights into the structure of nanoporous carbons from NMR, Raman, and pair distribution function analysis
    (Washington D.C. : American Chemical Society, 2015) Forse, Alexander C.; Merlet, Céline; Allan, Phoebe K.; Humphreys, Elizabeth K.; Griffin, John M.; Aslan, Mesut; Zeiger, Marco; Presser, Volker; Gogotsi, Yury; Grey, Clare P.
    The structural characterization of nanoporous carbons is a challenging task as they generally lack long-range order and can exhibit diverse local structures. Such characterization represents an important step toward understanding and improving the properties and functionality of porous carbons, yet few experimental techniques have been developed for this purpose. Here we demonstrate the application of nuclear magnetic resonance (NMR) spectroscopy and pair distribution function (PDF) analysis as new tools to probe the local structures of porous carbons, alongside more conventional Raman spectroscopy. Together, the PDFs and the Raman spectra allow the local chemical bonding to be probed, with the bonding becoming more ordered for carbide-derived carbons (CDCs) synthesized at higher temperatures. The ring currents induced in the NMR experiment (and thus the observed NMR chemical shifts for adsorbed species) are strongly dependent on the size of the aromatic carbon domains. We exploit this property and use computer simulations to show that the carbon domain size increases with the temperature used in the carbon synthesis. The techniques developed here are applicable to a wide range of porous carbons and offer new insights into the structures of CDCs (conventional and vacuum-annealed) and coconut shell-derived activated carbons.