Search Results

Now showing 1 - 5 of 5
  • Item
    The Many Deaths of Supercapacitors: Degradation, Aging, and Performance Fading
    (Weinheim : Wiley-VCH, 2023) Pameté, Emmanuel; Köps, Lukas; Kreth, Fabian Alexander; Pohlmann, Sebastian; Varzi, Alberto; Brousse, Thierry; Balducci, Andrea; Presser, Volker
    High-performance electrochemical applications have expedited the research in high-power devices. As such, supercapacitors, including electrical double-layer capacitors (EDLCs) and pseudocapacitors, have gained significant attention due to their high power density, long cycle life, and fast charging capabilities. Yet, no device lasts forever. It is essential to understand the mechanisms behind performance degradation and aging so that these bottlenecks can be addressed and tailored solutions can be developed. Herein, the factors contributing to the aging and degradation of supercapacitors, including electrode materials, electrolytes, and other aspects of the system, such as pore blocking, electrode compositions, functional groups, and corrosion of current collectors are examined. The monitoring and characterizing of the performance degradation of supercapacitors, including electrochemical methods, in situ, and ex situ techniques are explored. In addition, the degradation mechanisms of different types of electrolytes and electrode materials and the effects of aging from an industrial application standpoint are analyzed. Next, how electrode degradations and electrolyte decompositions can lead to failure, and pore blocking, electrode composition, and other factors that affect the device's lifespan are examined. Finally, the future directions and challenges for reducing supercapacitors' performance degradation, including developing new materials and methods for characterizing and monitoring the devices are summarized.
  • Item
    Graphene Acid for Lithium‐Ion Batteries—Carboxylation Boosts Storage Capacity in Graphene
    (Weinheim : Wiley-VCH, 2021) Obraztsov, Ievgen; Bakandritsos, Aristides; Šedajová, Veronika; Langer, Rostislav; Jakubec, Petr; Zoppellaro, Giorgio; Pykal, Martin; Presser, Volker; Otyepka, Michal; Zbořil, Radek
    Environmentally sustainable, low-cost, flexible, and lightweight energy storage technologies require advancement in materials design in order to obtain more efficient organic metal-ion batteries. Synthetically tailored organic molecules, which react reversibly with lithium, may address the need for cost-effective and eco-friendly anodes used for organic/lithium battery technologies. Among them, carboxylic group-bearing molecules act as high-energy content anodes. Although organic molecules offer rich chemistry, allowing a high content of carboxyl groups to be installed on aromatic rings, they suffer from low conductivity and leakage to the electrolytes, which restricts their actual capacity, the charging/discharging rate, and eventually their application potential. Here, a densely carboxylated but conducting graphene derivative (graphene acid (GA)) is designed to circumvent these critical limitations, enabling effective operation without compromising the mechanical or chemical stability of the electrode. Experiments including operando Raman measurements and theoretical calculations reveal the excellent charge transport, redox activity, and lithium intercalation properties of the GA anode at the single-layer level, outperforming all reported organic anodes, including commercial monolayer graphene and graphene nanoplatelets. The practical capacity and rate capability of 800 mAh g−1 at 0.05 A g−1 and 174 mAh g−1 at 2.0 A g−1 demonstrate the true potential of GA anodes in advanced lithium-ion batteries.
  • Item
    Unraveling the Electrochemical Mechanism in Tin Oxide/MXene Nanocomposites as Highly Reversible Negative Electrodes for Lithium-Ion Batteries
    (Weinheim : Wiley-VCH, 2023) Gentile, Antonio; Arnold, Stefanie; Ferrara, Chiara; Marchionna, Stefano; Tang, Yushu; Maibach, Julia; Kübel, Christian; Presser, Volker; Ruffo, Riccardo
    Lithium-ion batteries are constantly developing as the demands for power and energy storage increase. One promising approach to designing high-performance lithium-ion batteries is using conversion/alloying materials, such as SnO2. This class of materials does, in fact, present excellent performance and ease of preparation; however, it suffers from mechanical instabilities during cycling that impair its use. One way to overcome these problems is to prepare composites with bi-dimensional materials that stabilize them. Thus, over the past 10 years, two-dimensional materials with excellent transport properties (graphene, MXenes) have been developed that can be used synergistically with conversion materials to exploit both advantages. In this work, a 50/50 (by mass) SnO2/Ti3C2Tz nanocomposite is prepared and optimized as a negative electrode for lithium-ion batteries. The nanocomposite delivers over 500 mAh g−1 for 700 cycles at 0.1 A g−1 and demonstrates excellent rate capability, with 340 mAh g−1 at 8 A g−1. These results are due to the synergistic behavior of the two components of the nanocomposite, as demonstrated by ex situ chemical, structural, and morphological analyses. This knowledge allows, for the first time, to formulate a reaction mechanism with lithium-ions that provides partial reversibility of the conversion reaction with the formation of SnO.
  • Item
    Layered Nano‐Mosaic of Niobium Disulfide Heterostructures by Direct Sulfidation of Niobium Carbide MXenes for Hydrogen Evolution
    (Weinheim : Wiley-VCH, 2022) Husmann, Samantha; Torkamanzadeh, Mohammad; Liang, Kun; Majed, Ahmad; Dun, Chaochao; Urban, Jeffrey J.; Naguib, Michael; Presser, Volker
    MXene-transition metal dichalcogenide (TMD) heterostructures are synthesized through a one-step heat treatment of Nb2C and Nb4C3. These MXenes are used without delamination or any pre-treatment. Heat treatments accomplish the sacrificial transformation of these MXenes into TMD (NbS2) at 700 and 900 °C under H2S. This work investigates, for the first time, the role of starting MXene phase in the derivative morphology. It is shown that while treatment of Nb2C at 700 °C leads to the formation of pillar-like structures on the parent MXene, Nb4C3 produces nano-mosaic layered NbS2. At 900 °C, both MXene phases, of the same transition metal, fully convert into nano-mosaic layered NbS2 preserving the parent MXene's layered morphology. When tested as electrodes for hydrogen evolution reaction, Nb4C3-derived hybrids show better performance than Nb2C derivatives. The Nb4C3-derived heterostructure exhibits a low overpotential of 198 mV at 10 mA cm−2 and a Tafel slope of 122 mV dec−1, with good cycling stability in an acidic electrolyte.
  • Item
    High-Entropy Energy Materials in the Age of Big Data: A Critical Guide to Next-Generation Synthesis and Applications
    (Weinheim : Wiley-VCH, 2021) Wang, Qingsong; Velasco, Leonardo; Breitung, Ben; Presser, Volker
    High-entropy materials (HEMs) with promising energy storage and conversion properties have recently attracted worldwide increasing research interest. Nevertheless, most research on the synthesis of HEMs focuses on a “trial and error” method without any guidance, which is very laborious and time-consuming. This review aims to provide an instructive approach to searching and developing new high-entropy energy materials in a much more efficient way. Toward materials design for future technologies, a fundamental understanding of the process/structure/property/performance linkage on an atomistic level will promote prescreening and selection of material candidates. With the help of computational material science, in which the fast development of computational capabilities that have a rapidly growing impact on new materials design, this fundamental understanding can be approached. Furthermore, high-throughput experimental methods, enabled by the advances in instrumentation and electronics, will accelerate the production of large quantities of results and stimulate the identification of the target products, adding knowledge in computational design. This review shows that combining computational preselection and verification by high-throughput can be an efficient approach to unveil the complexities of HEMs and design novel HEMs with enhanced properties for energy-related applications.