Search Results

Now showing 1 - 3 of 3
  • Item
    How to speed up ion transport in nanopores
    ([London] : Nature Publishing Group UK, 2020) Breitsprecher, Konrad; Janssen, Mathijs; Srimuk, Pattarachai; Mehdi, B. Layla; Presser, Volker; Holm, Christian; Kondrat, Svyatoslav
    Electrolyte-filled subnanometre pores exhibit exciting physics and play an increasingly important role in science and technology. In supercapacitors, for instance, ultranarrow pores provide excellent capacitive characteristics. However, ions experience difficulties in entering and leaving such pores, which slows down charging and discharging processes. In an earlier work we showed for a simple model that a slow voltage sweep charges ultranarrow pores quicker than an abrupt voltage step. A slowly applied voltage avoids ionic clogging and co-ion trapping—a problem known to occur when the applied potential is varied too quickly—causing sluggish dynamics. Herein, we verify this finding experimentally. Guided by theoretical considerations, we also develop a non-linear voltage sweep and demonstrate, with molecular dynamics simulations, that it can charge a nanopore even faster than the corresponding optimized linear sweep. For discharging we find, with simulations and in experiments, that if we reverse the applied potential and then sweep it to zero, the pores lose their charge much quicker than they do for a short-circuited discharge over their internal resistance. Our findings open up opportunities to greatly accelerate charging and discharging of subnanometre pores without compromising the capacitive characteristics, improving their importance for energy storage, capacitive deionization, and electrochemical heat harvesting.
  • Item
    Persistent and reversible solid iodine electrodeposition in nanoporous carbons
    (Berlin : Springer Nature, 2020) Prehal, Christian; Fitzek, Harald; Kothleitner, Gerad; Presser, Volker; Gollas, Bernhard; Freunberger, Stefan A.; Abbas, Qamar
    Aqueous iodine based electrochemical energy storage is considered a potential candidate to improve sustainability and performance of current battery and supercapacitor technology. It harnesses the redox activity of iodide, iodine, and polyiodide species in the confined geometry of nanoporous carbon electrodes. However, current descriptions of the electrochemical reaction mechanism to interconvert these species are elusive. Here we show that electrochemical oxidation of iodide in nanoporous carbons forms persistent solid iodine deposits. Confinement slows down dissolution into triiodide and pentaiodide, responsible for otherwise significant self-discharge via shuttling. The main tools for these insights are in situ Raman spectroscopy and in situ small and wide-angle X-ray scattering (in situ SAXS/WAXS). In situ Raman confirms the reversible formation of triiodide and pentaiodide. In situ SAXS/WAXS indicates remarkable amounts of solid iodine deposited in the carbon nanopores. Combined with stochastic modeling, in situ SAXS allows quantifying the solid iodine volume fraction and visualizing the iodine structure on 3D lattice models at the sub-nanometer scale. Based on the derived mechanism, we demonstrate strategies for improved iodine pore filling capacity and prevention of self-discharge, applicable to hybrid supercapacitors and batteries.
  • Item
    Author Correction: Persistent and reversible solid iodine electrodeposition in nanoporous carbons
    ([London] : Nature Publishing Group UK, 2020) Prehal, Christian; Fitzek, Harald; Kothleitner, Gerald; Presser, Volker; Gollas, Bernhard; Freunberger, Stefan A.; Abbas, Qamar
    Correction to: Nature Communications https://doi.org/10.1038/s41467-020-18610-6, published online 24 September 2020.