Search Results

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Item

Switchable adhesion in vacuum using bio-inspired dry adhesives

2015, Purtov, Julia, Frensemeier, Mareike, Kroner, Elmar

Suction based attachment systems for pick and place handling of fragile objects like glass plates or optical lenses are energy-consuming and noisy and fail at reduced air pressure, which is essential, e.g., in chemical and physical vapor deposition processes. Recently, an alternative approach toward reversible adhesion of sensitive objects based on bioinspired dry adhesive structures has emerged. There, the switching in adhesion is achieved by a reversible buckling of adhesive pillar structures. In this study, we demonstrate that these adhesives are capable of switching adhesion not only in ambient air conditions but also in vacuum. Our bioinspired patterned adhesive with an area of 1 cm2 provided an adhesion force of 2.6 N ± 0.2 N in air, which was reduced to 1.9 N ± 0.2 N if measured in vacuum. Detachment was induced by buckling of the structures due to a high compressive preload and occurred, independent of air pressure, at approximately 0.9 N ± 0.1 N. The switch in adhesion was observed at a compressive preload between 5.6 and 6.0 N and was independent of air pressure. The difference between maximum adhesion force and adhesion force after buckling gives a reasonable window of operation for pick and place processes. High reversibility of the switching behavior is shown over 50 cycles in air and in vacuum, making the bioinspired switchable adhesive applicable for handling operations of fragile objects.

Loading...
Thumbnail Image
Item

Improved development procedure to enhance the stability of microstructures created by two-photon polymerization

2018, Purtov, Julia, Verch, Andreas, Rogin, Peter, Hensel, René

Natural functional surfaces often rely on unique nano- and micropatterns. To mimic such surfaces successfully, patterning techniques are required that enable the fabrication of three-dimensional structures at the nanoscale. It has been reported that two-photon polymerization (TPP) is a suitable method for this. However, polymer structures fabricated by TPP often tend to shrink and to collapse during the fabrication process. In particular, delicate structures suffer from their insufficient mechanical stability against capillary forces which mainly arisein the fabrication process during the evaporation of the developer and rinsing liquids. Here, we report a modified development approach, which enables an additional UV-treatment to post cross-link created structures before they are dried. We tested our approach on nanopillar arrays and microscopic pillar structures mimicking the moth-eye and the gecko adhesives, respectively. Our results indicate a significant improvement of the me- chanical stability of the polymer structures, resulting in fewer defects and reduced shrinkage of the structures.