Search Results

Now showing 1 - 5 of 5
  • Item
    Simulating ultrafine particle formation in Europe using a regional CTM: Contribution of primary emissions versus secondary formation to aerosol number concentrations
    (München : European Geopyhsical Union, 2012) Fountoukis, C.; Riipinen, I.; Denier van der Gon, H.A.C.; Charalampidis, P.E.; Pilinis, C.; Wiedensohler, A.; O'Dowd, C.; Putaud, J.P.; Moerman, M.; Pandis, S.N.
    A three-dimensional regional chemical transport model (CTM) with detailed aerosol microphysics, PMCAMx-UF, was applied to the European domain to simulate the contribution of direct emissions and secondary formation to total particle number concentrations during May 2008. PMCAMx-UF uses the Dynamic Model for Aerosol Nucleation and the Two-Moment Aerosol Sectional (TOMAS) algorithm to track both aerosol number and mass concentration using a sectional approach. The model predicts nucleation events that occur over scales of hundreds up to thousands of kilometers especially over the Balkans and Southeast Europe. The model predictions were compared against measurements from 7 sites across Europe. The model reproduces more than 70% of the hourly concentrations of particles larger than 10 nm (N10) within a factor of 2. About half of these particles are predicted to originate from nucleation in the lower troposphere. Regional nucleation is predicted to increase the total particle number concentration by approximately a factor of 3. For particles larger than 100 nm the effect varies from an increase of 20% in the eastern Mediterranean to a decrease of 20% in southern Spain and Portugal resulting in a small average increase of around 1% over the whole domain. Nucleation has a significant effect in the predicted N50 levels (up to a factor of 2 increase) mainly in areas where there are condensable vapors to grow the particles to larger sizes. A semi-empirical ternary sulfuric acid-ammonia-water parameterization performs better than the activation or the kinetic parameterizations in reproducing the observations. Reducing emissions of ammonia and sulfur dioxide affects certain parts of the number size distribution.
  • Item
    Soot reference materials for instrument calibration and intercomparisons: A workshop summary with recommendations
    (München : European Geopyhsical Union, 2012) Baumgardner, D.; Popovicheva, O.; Allan, J.; Bernardoni, V.; Cao, J.; Cavalli, F.; Cozic, J.; Courcoux, Y.; Diapouli, E.; Eleftheriadis, K.; Genberg, P.J.; Gonzalez, C.; Gysel, M.; John, A.; Kirchstetter, T.W.; Kuhlbusch, T.A.J.; Laborde, M.; Lack, D.; Müller, T.; Niessner, R.; Petzold, A.; Piazzalunga, A.; Putaud, J.P.; Schwarz, J.; Sheridan, P.; Subramanian, R.; Swietlicki, E.; Valli, G.; Vecchi, R.; Viana, M.
    Soot, which is produced from biomass burning and the incomplete combustion of fossil and biomass fuels, has been linked to regional and global climate change and to negative health problems. Scientists measure the properties of soot using a variety of methods in order to quantify source emissions and understand its atmospheric chemistry, reactivity under emission conditions, interaction with solar radiation, influence on clouds, and health impacts. A major obstacle currently limiting progress is the absence of established standards or reference materials for calibrating the many instruments used to measure the various properties of soot. The current state of availability and practicability of soot standard reference materials (SRMs) was reviewed by a group of 50 international experts during a workshop in June of 2011. The workshop was convened to summarize the current knowledge on soot measurement techniques, identify the measurement uncertainties and limitations related to the lack of soot SRMs, and identify attributes of SRMs that, if developed, would reduce measurement uncertainties. The workshop established that suitable SRMs are available for calibrating some, but not all, measurement methods. The community of users of the single-particle soot-photometer (SP2), an instrument using laser-induced incandescence, identified a suitable SRM, fullerene soot, but users of instruments that measure light absorption by soot collected on filters did not. Similarly, those who use thermal optical analysis (TOA) to analyze the organic and elemental carbon components of soot were not satisfied with current SRMs. The workshop, and subsequent, interactive discussions, produced a number of recommendations for the development of new SRMs, and their implementation, that would be suitable for the different soot measurement methods.
  • Item
    A European aerosol phenomenology -4: Harmonized concentrations of carbonaceous aerosol at 10 regional background sites across Europe
    (Amsterdam [u.a.] : Elsevier Science, 2016) Cavalli, F.; Alastuey, A.; Areskoug, H.; Ceburnis, D.; Čech, J.; Genberg, J.; Harrison, R.M.; Jaffrezo, J.L.; Kiss, G.; Laj, P.; Mihalopoulos, N.; Perez, N.; Quincey, P.; Schwarz, J.; Sellegri, K.; Spindler, G.; Swietlicki, E.; Theodosi, C.; Yttri, K.E.; Aas, W.; Putaud, J.P.
    Although particulate organic and elemental carbon (OC and EC) are important constituents of the suspended atmospheric particulate matter (PM), measurements of OC and EC are much less common and more uncertain than measurements of e.g. the ionic components of PM. In the framework of atmospheric research infrastructures supported by the European Union, actions have been undertaken to determine and mitigate sampling artefacts, and assess the comparability of OC and EC data obtained in a network of 10 atmospheric observatories across Europe. Positive sampling artefacts (from 0.4 to 2.8 μg C/m3) and analytical discrepancies (between −50% and +40% for the EC/TC ratio) have been taken into account to generate a robust data set, from which we established the phenomenology of carbonaceous aerosols at regional background sites in Europe. Across the network, TC and EC annual average concentrations range from 0.4 to 9 μg C/m3, and from 0.1 to 2 μg C/m3, respectively. TC/PM10 annual mean ratios range from 0.11 at a Mediterranean site to 0.34 at the most polluted continental site, and TC/PM2.5 ratios are slightly greater at all sites (0.15–0.42). EC/TC annual mean ratios range from 0.10 to 0.22, and do not depend much on PM concentration levels, especially in winter. Seasonal variations in PM and TC concentrations, and in TC/PM and EC/TC ratios, differ across the network, which can be explained by seasonal changes in PM source contributions at some sites.
  • Item
    A European aerosol phenomenology - 7: High-time resolution chemical characteristics of submicron particulate matter across Europe
    (Amsterdam : Elsevier, 2021) Bressi, M.; Cavalli, F.; Putaud, J.P.; Fröhlich, R.; Petit, J.-E.; Aas, W.; Äijälä, M.; Alastuey, A.; Allan, J.D.; Aurela, M.; Berico, M.; Bougiatioti, A.; Bukowiecki, N.; Canonaco, F.; Crenn, V.; Dusanter, S.; Ehn, M.; Elsasser, M.; Flentje, H.; Graf, P.; Green, D.C.; Heikkinen, L.; Hermann, H.; Holzinger, R.; Hueglin, C.; Keernik, H.; Kiendler-Scharr, A.; Kubelová, L.; Lunder, C.; Maasikmets, M.; Makeš, O.; Malaguti, A.; Mihalopoulos, N.; Nicolas, J.B.; O'Dowd, C.; Ovadnevaite, J.; Petralia, E.; Poulain, L.; Priestman, M.; Riffault, V.; Ripoll, A.; Schlag, P.; Schwarz, J.; Sciare, J.; Slowik, J.; Sosedova, Y.; Stavroulas, I.; Teinemaa, E.; Via, M.; Vodička, P.; Williams, P.I.; Wiedensohler, A.; Young, D.E.; Zhang, S.; Favez, O.; Minguillón, M.C.; Prevot, A.S.H.
    Similarities and differences in the submicron atmospheric aerosol chemical composition are analyzed from a unique set of measurements performed at 21 sites across Europe for at least one year. These sites are located between 35 and 62°N and 10° W – 26°E, and represent various types of settings (remote, coastal, rural, industrial, urban). Measurements were all carried out on-line with a 30-min time resolution using mass spectroscopy based instruments known as Aerosol Chemical Speciation Monitors (ACSM) and Aerosol Mass Spectrometers (AMS) and following common measurement guidelines. Data regarding organics, sulfate, nitrate and ammonium concentrations, as well as the sum of them called non-refractory submicron aerosol mass concentration ([NR-PM1]) are discussed. NR-PM1 concentrations generally increase from remote to urban sites. They are mostly larger in the mid-latitude band than in southern and northern Europe. On average, organics account for the major part (36–64%) of NR-PM1 followed by sulfate (12–44%) and nitrate (6–35%). The annual mean chemical composition of NR-PM1 at rural (or regional background) sites and urban background sites are very similar. Considering rural and regional background sites only, nitrate contribution is higher and sulfate contribution is lower in mid-latitude Europe compared to northern and southern Europe. Large seasonal variations in concentrations (μg/m³) of one or more components of NR-PM1 can be observed at all sites, as well as in the chemical composition of NR-PM1 (%) at most sites. Significant diel cycles in the contribution to [NR-PM1] of organics, sulfate, and nitrate can be observed at a majority of sites both in winter and summer. Early morning minima in organics in concomitance with maxima in nitrate are common features at regional and urban background sites. Daily variations are much smaller at a number of coastal and rural sites. Looking at NR-PM1 chemical composition as a function of NR-PM1 mass concentration reveals that although organics account for the major fraction of NR-PM1 at all concentration levels at most sites, nitrate contribution generally increases with NR-PM1 mass concentration and predominates when NR-PM1 mass concentrations exceed 40 μg/m³ at half of the sites. © 2021 The Authors
  • Item
    A European aerosol phenomenology-5: Climatology of black carbon optical properties at 9 regional background sites across Europe
    (Amsterdam : Elsevier, 2016) Zanatta, M.; Gysel, M.; Bukowiecki, N.; Müller, T.; Weingartner, E.; Areskoug, H.; Fiebig, M.; Yttri, K.E.; Mihalopoulos, N.; Kouvarakis, G.; Beddows, D.; Harrison, R.M.; Cavalli, F.; Putaud, J.P.; Spindler, G.; Wiedensohler, A.; Alastuey, A.; Pandolfi, M.; Sellegri, K.; Swietlicki, E.; Jaffrezo, J.L.; Baltensperger, U.; Laj, P.
    A reliable assessment of the optical properties of atmospheric black carbon is of crucial importance for an accurate estimation of radiative forcing. In this study we investigated the spatio-temporal variability of the mass absorption cross-section (MAC) of atmospheric black carbon, defined as light absorption coefficient (σap) divided by elemental carbon mass concentration (mEC). σap and mEC have been monitored at supersites of the ACTRIS network for a minimum period of one year. The 9 rural background sites considered in this study cover southern Scandinavia, central Europe and the Mediterranean. σap was determined using filter based absorption photometers and mEC using a thermal-optical technique. Homogeneity of the data-set was ensured by harmonization of all involved methods and instruments during extensive intercomparison exercises at the European Center for Aerosol Calibration (ECAC). Annual mean values of σap at a wavelength of 637 nm vary between 0.66 and 1.3 Mm−1 in southern Scandinavia, 3.7–11 Mm−1 in Central Europe and the British Isles, and 2.3–2.8 Mm−1 in the Mediterranean. Annual mean values of mEC vary between 0.084 and 0.23 μg m−3 in southern Scandinavia, 0.28–1.1 in Central Europe and the British Isles, and 0.22–0.26 in the Mediterranean. Both σap and mEC in southern Scandinavia and Central Europe have a distinct seasonality with maxima during the cold season and minima during summer, whereas at the Mediterranean sites an opposite trend was observed. Annual mean MAC values were quite similar across all sites and the seasonal variability was small at most sites. Consequently, a MAC value of 10.0 m2 g−1 (geometric standard deviation = 1.33) at a wavelength of 637 nm can be considered to be representative of the mixed boundary layer at European background sites, where BC is expected to be internally mixed to a large extent. The observed spatial variability is rather small compared to the variability of values in previous literature, indicating that the harmonization efforts resulted in substantially increased precision of the reported MAC. However, absolute uncertainties of the reported MAC values remain as high as ± 30–70% due to the lack of appropriate reference methods and calibration materials. The mass ratio between elemental carbon and non-light-absorbing matter was used as a proxy for the thickness of coatings around the BC cores, in order to assess the influence of the mixing state on the MAC of BC. Indeed, the MAC was found to increase with increasing values of the coating thickness proxy. This provides evidence that coatings do increase the MAC of atmospheric BC to some extent, which is commonly referred to as lensing effect.