Search Results

Now showing 1 - 4 of 4
  • Item
    Circular stripe domains and cone state vortices in disk-shaped exchange coupled magnetic heterostructures
    (Bristol : IOP Publ., 2022) Zaiets, Oleksandr; Kravchuk, Volodymyr P.; Pylypovskyi, Oleksandr V.; Makarov, Denys; Sheka, Denis D.
    Vertically stacked exchange coupled magnetic heterostructures of cylindrical geometry can host complex noncolinear magnetization patterns. By tuning the interlayer exchange coupling between a layer accommodating magnetic vortex state and an out-of-plane magnetized layer, one can efficiently realize new topological chiral textures such as cone state vortices and circular stripe domains. We study how the number of circular stripes can be controlled by both the interlayer exchange coupling and the sample geometrical parameters. By varying geometrical parameters, a continuous phase transition between the homogeneous state, cone state vortex, circular stripe domains, and the imprinted vortex takes place, which is analysed by full scale micromagnetic simulations. The analytical description provides an intuitive pictures of the magnetization textures in each of these phases. The possibility to realize switching between different states allows for engineering magnetic textures with possible applications in spintronic devices.
  • Item
    Chirality coupling in topological magnetic textures with multiple magnetochiral parameters
    ([London] : Nature Publishing Group UK, 2023) Volkov, Oleksii M.; Wolf, Daniel; Pylypovskyi, Oleksandr V.; Kákay, Attila; Sheka, Denis D.; Büchner, Bernd; Fassbender, Jürgen; Lubk, Axel; Makarov, Denys
    Chiral effects originate from the lack of inversion symmetry within the lattice unit cell or sample’s shape. Being mapped onto magnetic ordering, chirality enables topologically non-trivial textures with a given handedness. Here, we demonstrate the existence of a static 3D texture characterized by two magnetochiral parameters being magnetic helicity of the vortex and geometrical chirality of the core string itself in geometrically curved asymmetric permalloy cap with a size of 80 nm and a vortex ground state. We experimentally validate the nonlocal chiral symmetry breaking effect in this object, which leads to the geometric deformation of the vortex string into a helix with curvature 3 μm−1 and torsion 11 μm−1. The geometric chirality of the vortex string is determined by the magnetic helicity of the vortex texture, constituting coupling of two chiral parameters within the same texture. Beyond the vortex state, we anticipate that complex curvilinear objects hosting 3D magnetic textures like curved skyrmion tubes and hopfions can be characterized by multiple coupled magnetochiral parameters, that influence their statics and field- or current-driven dynamics for spin-orbitronics and magnonics.
  • Item
    Coupling of chiralities in spin and physical spaces: The Möbius ring as a case study
    (College Park : American Physical Society, 2015) Pylypovskyi, Oleksandr V.; Kravchuk, Volodymyr P.; Sheka, Denis D.; Makarov, Denys; Schmidt, Oliver G.; Gaididei, Yuri
    We show that the interaction of the magnetic subsystem of a curved magnet with the magnet curvature results in the coupling of a topologically nontrivial magnetization pattern and topology of the object. The mechanism of this coupling is explored and illustrated by an example of a ferromagnetic Möbius ring, where a topologically induced domain wall appears as a ground state in the case of strong easy-normal anisotropy. For the Möbius geometry, the curvilinear form of the exchange interaction produces an additional effective Dzyaloshinskii-like term which leads to the coupling of the magnetochirality of the domain wall and chirality of the Möbius ring. Two types of domain walls are found, transversal and longitudinal, which are oriented across and along the Möbius ring, respectively. In both cases, the effect of magnetochirality symmetry breaking is established. The dependence of the ground state of the Möbius ring on its geometrical parameters and on the value of the easy-normal anisotropy is explored numerically.
  • Item
    Curvature induced magnonic crystal in nanowires
    (Amsterdam : SciPost Foundation, 2019) Korniienko, Anastasiia; Kravchuk, Volodymyr P.; Pylypovskyi, Oleksandr V.; Sheka, Denis D.; van den Brink, Jeroen; Gaididei, Yuri
    A new type of magnonic crystals, curvature induced ones, is realized in ferromagnetic nanowires with periodically deformed shape. A magnon band structure of such crystal is fully determined by its curvature: the developed theory is well confirmed by simulations. An application to nanoscale spintronic devices with the geometrically tunable parameters is proposed, namely, to filter elements.