Search Results

Now showing 1 - 2 of 2
  • Item
    Flexomagnetism and vertically graded Néel temperature of antiferromagnetic Cr2O3 thin films
    ([London] : Nature Publishing Group UK, 2022) Makushko, Pavlo; Kosub, Tobias; Pylypovskyi, Oleksandr V.; Hedrich, Natascha; Li, Jiang; Pashkin, Alexej; Avdoshenko, Stanislav; Hübner, René; Ganss, Fabian; Wolf, Daniel; Lubk, Axel; Liedke, Maciej Oskar; Butterling, Maik; Wagner, Andreas; Wagner, Kai; Shields, Brendan J.; Lehmann, Paul; Veremchuk, Igor; Fassbender, Jürgen; Maletinsky, Patrick; Makarov, Denys
    Antiferromagnetic insulators are a prospective materials platform for magnonics, spin superfluidity, THz spintronics, and non-volatile data storage. A magnetomechanical coupling in antiferromagnets offers vast advantages in the control and manipulation of the primary order parameter yet remains largely unexplored. Here, we discover a new member in the family of flexoeffects in thin films of Cr2O3. We demonstrate that a gradient of mechanical strain can impact the magnetic phase transition resulting in the distribution of the Néel temperature along the thickness of a 50-nm-thick film. The inhomogeneous reduction of the antiferromagnetic order parameter induces a flexomagnetic coefficient of about 15 μB nm−2. The antiferromagnetic ordering in the inhomogeneously strained films can persist up to 100 °C, rendering Cr2O3 relevant for industrial electronics applications. Strain gradient in Cr2O3 thin films enables fundamental research on magnetomechanics and thermodynamics of antiferromagnetic solitons, spin waves and artificial spin ice systems in magnetic materials with continuously graded parameters.
  • Item
    Rashba torque driven domain wall motion in magnetic helices
    (London : Nature Publishing Group, 2016) Pylypovskyi, Oleksandr V.; Sheka, Denis D.; Kravchuk, Volodymyr P.; Yershov, Kostiantyn V.; Makarov, Denys; Gaididei, Yuri
    Manipulation of the domain wall propagation in magnetic wires is a key practical task for a number of devices including racetrack memory and magnetic logic. Recently, curvilinear effects emerged as an efficient mean to impact substantially the statics and dynamics of magnetic textures. Here, we demonstrate that the curvilinear form of the exchange interaction of a magnetic helix results in an effective anisotropy term and Dzyaloshinskii–Moriya interaction with a complete set of Lifshitz invariants for a one-dimensional system. In contrast to their planar counterparts, the geometrically induced modifications of the static magnetic texture of the domain walls in magnetic helices offer unconventional means to control the wall dynamics relying on spin-orbit Rashba torque. The chiral symmetry breaking due to the Dzyaloshinskii–Moriya interaction leads to the opposite directions of the domain wall motion in left- or right-handed helices. Furthermore, for the magnetic helices, the emergent effective anisotropy term and Dzyaloshinskii–Moriya interaction can be attributed to the clear geometrical parameters like curvature and torsion offering intuitive understanding of the complex curvilinear effects in magnetism.