Search Results

Now showing 1 - 2 of 2
  • Item
    Thiophene-Based Conjugated Acetylenic Polymers with Dual Active Sites for Efficient Co-Catalyst-Free Photoelectrochemical Water Reduction in Alkaline Medium
    (Weinheim : Wiley-VCH, 2021) Borrelli, Mino; Querebillo, Christine Joy; Pastoetter, Dominik L.; Wang, Tao; Milani, Alberto; Casari, Carlo; Khoa Ly, Hoang; He, Fan; Hou, Yang; Neumann, Christof; Turchanin, Andrey; Sun, Hanjun; Weidinger, Inez M.; Feng, Xinliang
    Although being attractive materials for photoelectrochemical hydrogen evolution reaction (PEC HER) under neutral or acidic conditions, conjugated polymers still show poor PEC HER performance in alkaline medium due to the lack of water dissociation sites. Herein, we demonstrate that tailoring the polymer skeleton from poly(diethynylthieno[3,2-b]thiophene) (pDET) to poly(2,6-diethynylbenzo[1,2-b:4,5-b′]dithiophene (pBDT) and poly(diethynyldithieno[3,2-b:2′,3′-d]thiophene) (pDTT) in conjugated acetylenic polymers (CAPs) introduces highly efficient active sites for water dissociation. As a result, pDTT and pBDT, grown on Cu substrate, demonstrate benchmark photocurrent densities of 170 μA cm−2 and 120 μA cm−2 (at 0.3 V vs. RHE; pH 13), which are 4.2 and 3 times higher than that of pDET, respectively. Moreover, by combining DFT calculations and electrochemical operando resonance Raman spectroscopy, we propose that the electron-enriched Cβ of the outer thiophene rings of pDTT are the water dissociation active sites, while the −C≡C− bonds function as the active sites for hydrogen evolution. © 2021 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH
  • Item
    Interfacial Covalent Bonds Regulated Electron-Deficient 2D Black Phosphorus for Electrocatalytic Oxygen Reactions
    (Weinheim : Wiley-VCH, 2021) Wang, Xia; Raghupathy, Ramya Kormath Madam; Querebillo, Christine Joy; Liao, Zhongquan; Li, Dongqi; Lin, Kui; Hantusch, Martin; Sofer, Zdeněk; Li, Baohua; Zschech, Ehrenfried; Weidinger, Inez M.; Kühne, Thomas D.; Mirhosseini, Hossein; Yu, Minghao; Feng, Xinliang
    Developing resource-abundant and sustainable metal-free bifunctional oxygen electrocatalysts is essential for the practical application of zinc–air batteries (ZABs). 2D black phosphorus (BP) with fully exposed atoms and active lone pair electrons can be promising for oxygen electrocatalysts, which, however, suffers from low catalytic activity and poor electrochemical stability. Herein, guided by density functional theory (DFT) calculations, an efficient metal-free electrocatalyst is demonstrated via covalently bonding BP nanosheets with graphitic carbon nitride (denoted BP-CN-c). The polarized P-N covalent bonds in BP-CN-c can efficiently regulate the electron transfer from BP to graphitic carbon nitride and significantly promote the OOH* adsorption on phosphorus atoms. Impressively, the oxygen evolution reaction performance of BP-CN-c (overpotential of 350 mV at 10 mA cm−2, 90% retention after 10 h operation) represents the state-of-the-art among the reported BP-based metal-free catalysts. Additionally, BP-CN-c exhibits a small half-wave overpotential of 390 mV for oxygen reduction reaction, representing the first bifunctional BP-based metal-free oxygen catalyst. Moreover, ZABs are assembled incorporating BP-CN-c cathodes, delivering a substantially higher peak power density (168.3 mW cm−2) than the Pt/C+RuO2-based ZABs (101.3 mW cm−2). The acquired insights into interfacial covalent bonds pave the way for the rational design of new and affordable metal-free catalysts. © 2021 The Authors. Advanced Materials published by Wiley-VCH GmbH