Search Results

Now showing 1 - 2 of 2
  • Item
    African smoke particles act as cloud condensation nuclei in the wintertime tropical North Atlantic boundary layer over Barbados
    (Katlenburg-Lindau : EGU, 2023) Royer, Haley M.; Pöhlker, Mira L.; Krüger, Ovid; Blades, Edmund; Sealy, Peter; Lata, Nurun Nahar; Cheng, Zezhen; China, Swarup; Ault, Andrew P.; Quinn, Patricia K.; Zuidema, Paquita; Pöhlker, Christopher; Pöschl, Ulrich; Andreae, Meinrat; Gaston, Cassandra J.
    The number concentration and properties of aerosol particles serving as cloud condensation nuclei (CCN) are important for understanding cloud properties, including in the tropical Atlantic marine boundary layer (MBL), where marine cumulus clouds reflect incoming solar radiation and obscure the low-albedo ocean surface. Studies linking aerosol source, composition, and water uptake properties in this region have been conducted primarily during the summertime dust transport season, despite the region receiving a variety of aerosol particle types throughout the year. In this study, we compare size-resolved aerosol chemical composition data to the hygroscopicity parameter κ derived from size-resolved CCN measurements made during the Elucidating the Role of Clouds-Circulation Coupling in Climate (EUREC4A) and Atlantic Tradewind Ocean-Atmosphere Mesoscale Interaction Campaign (ATOMIC) campaigns from January to February 2020. We observed unexpected periods of wintertime long-range transport of African smoke and dust to Barbados. During these periods, the accumulation-mode aerosol particle and CCN number concentrations as well as the proportions of dust and smoke particles increased, whereas the average κ slightly decreased (κCombining double low line0.46±0.10) from marine background conditions (κCombining double low line0.52±0.09) when the submicron particles were mostly composed of marine organics and sulfate. Size-resolved chemical analysis shows that smoke particles were the major contributor to the accumulation mode during long-range transport events, indicating that smoke is mainly responsible for the observed increase in CCN number concentrations. Earlier studies conducted at Barbados have mostly focused on the role of dust on CCN, but our results show that aerosol hygroscopicity and CCN number concentrations during wintertime long-range transport events over the tropical North Atlantic are also affected by African smoke. Our findings highlight the importance of African smoke for atmospheric processes and cloud formation over the Caribbean.
  • Item
    Aerosol physical properties and processes in the lower marine boundary layer: A comparison of shipboard sub-micron data from ACE-1 and ACE-2
    (Milton Park : Taylor & Francis, 2016) Bates, Timothy S.; Quinn, Patricia K.; Covert, David S.; Coffman, Derek J.; Johnson, James E.; Wiedensohler, Alfred
    The goals of the IGAC Aerosol Characterization Experiments (ACE) are to determine and understand the properties and controlling processes of the aerosol in a globally representative range of natural and anthropogenically perturbed environments. ACE-1 was conducted in the remote marine atmosphere south of Australia while ACE-2 was conducted in the anthropogenically modified atmosphere of the Eastern North Atlantic. In-situ shipboard measurements from the RV Discoverer(ACE-1) and the RV Professor Vodyanitskiy(ACE-2), combined with calculated back trajectories can be used to define the physical properties of the sub-micron aerosol in marine boundary layer (MBL) air masses from the remote Southern Ocean, Western Europe, the Iberian coast, the Mediterranean and the background Atlantic Ocean. The differences in these aerosol properties, combined with dimethylsulfide, sulfur dioxide and meteorological measurements provide a means to assess processes that affect the aerosol distribution. The background sub-micron aerosol measured over the Atlantic Ocean during ACE-2 was more abundant (number and volume) and appeared to be more aged than that measured over the Southern Ocean during ACE-1. Based on seawater DMS measurements and wind speed, the oceanic source of non-sea-salt sulfur and sea-salt to the background marine atmosphere during ACE-1 and ACE-2 was similar. However, the synoptic meteorological pattern was quite different during ACE-1 and ACE-2. The frequent frontal passages during ACE-1 resulted in the mixing of nucleation mode particles into the marine boundary layer from the free troposphere and relatively short aerosol residence times. In the more stable meteorological setting of ACE-2, a significant nucleation mode aerosol was observed in the MBL only for a half day period associated with a weak frontal system. As a result of the longer MBL aerosol residence times, the average background ACE-2 accumulation mode aerosol had a larger diameter and higher number concentration than during ACE-1. The sub-micron aerosol number size distributions in the air masses that passed over Western Europe, the Mediterranean, and coastal Portugal were distinctly different from each other and the background aerosol. The differences can be attributed to the age of the air mass and the degree of cloud processing.