Search Results

Now showing 1 - 1 of 1
  • Item
    Microscopic insight into the bilateral formation of carbon spirals from a symmetric iron core
    (London : Nature Publishing Group, 2013) Shiozawa, Hidetsugu; Bachmatiuk, Alicja; Stangl, Andreas; Cox, David C.; Silva, S. Ravi P.; Rümmeli, Mark; Pichler, Thomas
    Mirrored carbon-spirals have been produced from pressured ferrocene via the bilateral extrusion of the spiral pairs from an iron core. A parametric plot of the surface geometry displays the fractal growth of the conical helix made with the logarithmic spiral. Electron microscopy studies show the core is a crystalline cementite which grows and transforms its shape from spherical to biconical as it extrudes two spiralling carbon arms. In a cross section along the arms we observe graphitic flakes arranged in a herringbone structure, normal to which defects propagate. Local-wave-pattern analysis reveals nanoscale defect patterns of two-fold symmetry around the core. The data suggest that the bilateral growth originates from a globular cementite crystal with molten surfaces and the nano-defects shape emerging hexagonal carbon into a fractal structure. Understanding and knowledge obtained provide a basis for the controlled production of advanced carbon materials with designed geometries.