Search Results

Now showing 1 - 10 of 10
  • Item
    Advances and Trends in Chemically Doped Graphene
    (Weinheim : Wiley-VCH, 2020) Ullah, Sami; Shi, Qitao; Zhou, Junhua; Yang, Xiaoqin; Ta, Huy Q.; Hasan, Maria; Ahmad, Nasir Mahmood; Fu, Lei; Bachmatiuk, Alicja; Rümmeli, Mark H.
    Chemically doped graphene materials are fascinating because these have different desirable attributes with possible synergy. The inert and gapless nature of graphene can be changed by adding a small number of heteroatoms to substitute carbon in the lattice. The doped material may display superior catalytic activities; durable, fast, and selective sensing; improved magnetic moments; photoresponses; and activity in chemical reactions. In the current review, recent advances are covered in chemically doped graphene. First, the different types of heteroatoms, their bonding configurations, and briefly their properties are discussed. This is followed by the description of various synthesis and analytical methods essential for assessing the characteristics of heterographene with specific focus on the selected graphene materials of different dopants (particularly, single dopants, including N, B, S, P, first three halogens, Ge, and Ga, and codopants, such as N/O), and more importantly, up-to-date applications enabled by the intentional doping. Finally, outlook and perspectives section review the existing challenges, future opportunities, and possible ways to improve the graphitic materials. The goal is to update and inspire the readers to establish novel doped graphene with valuable properties and for current and futuristic applications. © 2020 The Authors. Published by Wiley-VCH GmbH
  • Item
    A wafer-scale two-dimensional platinum monosulfide ultrathin film via metal sulfurization for high performance photoelectronics
    (Cambridge : Royal Society of Chemistry, 2022) Pang, Jinbo; Wang, Yanhao; Yang, Xiaoxin; Zhang, Lei; Li, Yufen; Zhang, Yu; Yang, Jiali; Yang, Feng; Wang, Xiao; Cuniberti, Gianaurelio; Liu, Hong; Rümmeli, Mark H.
    2D nonlayered materials have attracted enormous research interests due to their novel physical and chemical properties with confined dimensions. Platinum monosulfide as one of the most common platinum-group minerals has been less studied due to either the low purity in the natural product or the extremely high-pressure conditions for synthesis. Recently, platinum monosulfide (PtS) 2D membranes have emerged as rising-star materials for fundamental Raman and X-ray photoelectron spectral analysis as well as device exploration. However, a large-area homogeneous synthesis route has not yet been proposed and released. In this communication, we report a facile metal sulfurization strategy for the synthesis of a 4-inch wafer-scale PtS film. Enhanced characterization tools have been employed for thorough analysis of the crystal structure, chemical environment, vibrational modes, and atomic configuration. Furthermore, through theoretical calculations the phase diagram of the Pt–S compound has been plotted for showing the successful formation of PtS in our synthesis conditions. Eventually, a high-quality PtS film has been reflected in device demonstration by a photodetector. Our approach may shed light on the mass production of PtS films with precise control of their thickness and homogeneity as well as van der Waals heterostructures and related electronic devices.
  • Item
    Applications of MXenes in human-like sensors and actuators
    (New York, NY [u.a.] : Springer, 2022) Pang, Jinbo; Peng, Songang; Hou, Chongyang; Wang, Xiao; Wang, Ting; Cao, Yu; Zhou, Weijia; Sun, Ding; Wang, Kai; Rümmeli, Mark H.; Cuniberti, Gianaurelio; Liu, Hong
    Human beings perceive the world through the senses of sight, hearing, smell, taste, touch, space, and balance. The first five senses are prerequisites for people to live. The sensing organs upload information to the nervous systems, including the brain, for interpreting the surrounding environment. Then, the brain sends commands to muscles reflexively to react to stimuli, including light, gas, chemicals, sound, and pressure. MXene, as an emerging two-dimensional material, has been intensively adopted in the applications of various sensors and actuators. In this review, we update the sensors to mimic five primary senses and actuators for stimulating muscles, which employ MXene-based film, membrane, and composite with other functional materials. First, a brief introduction is delivered for the structure, properties, and synthesis methods of MXenes. Then, we feed the readers the recent reports on the MXene-derived image sensors as artificial retinas, gas sensors, chemical biosensors, acoustic devices, and tactile sensors for electronic skin. Besides, the actuators of MXene-based composite are introduced. Eventually, future opportunities are given to MXene research based on the requirements of artificial intelligence and humanoid robot, which may induce prospects in accompanying healthcare and biomedical engineering applications. [Figure not available: see fulltext.]
  • Item
    A size dependent evaluation of the cytotoxicity and uptake of nanographene oxide
    (London [u.a.] : RSC, 2015) Mendes, Rafael Gregorio; Koch, Britta; Bachmatiuk, Alicja; Ma, Xing; Sanchez, Samuel; Damm, Christine; Schmidt, Oliver G.; Gemming, Thomas; Eckert, Jürgen; Rümmeli, Mark H.
    Graphene oxide (GO) has attracted great interest due to its extraordinary potential for biomedical application. Although it is clear that the naturally occurring morphology of biological structures is crucial to their precise interactions and correct functioning, the geometrical aspects of nanoparticles are often ignored in the design of nanoparticles for biological applications. A few in vitro and in vivo studies have evaluated the cytotoxicity and biodistribution of GO, however very little is known about the influence of flake size and cytotoxicity. Herein, we aim at presenting an initial cytotoxicity evaluation of different nano-sized GO flakes for two different cell lines (HeLa (Kyoto) and macrophage (J7742)) when they are exposed to samples containing different sized nanographene oxide (NGO) flakes (mean diameter of 89 and 277 nm). The obtained data suggests that the larger NGO flakes reduce cell viability as compared to smaller flakes. In addition, the viability reduction correlates with the time and the concentration of the NGO nanoparticles to which the cells are exposed. Uptake studies were also conducted and the data suggests that both cell lines internalize the GO nanoparticles during the incubation periods studied.
  • Item
    Tailoring the stoichiometry of C3N4 nanosheets under electron beam irradiation
    (Cambridge : RSC Publ., 2021) Mendes, Rafael G.; Ta, Huy Q.; Yang, Xiaoqin; Bachmatiuk, Alicja; Praus, Petr; Mamakhel, Aref; Iversen, Bo B.; Su, Ren; Gemming, Thomas; Rümmeli, Mark H.
    Two-dimensional polymeric graphitic carbon nitride (g-C3N4) is a low-cost material with versatile properties that can be enhanced by the introduction of dopant atoms and by changing the degree of polymerization/stoichiometry, which offers significant benefits for numerous applications. Herein, we investigate the stability of g-C3N4 under electron beam irradiation inside a transmission electron microscope operating at different electron acceleration voltages. Our findings indicate that the degradation of g-C3N4 occurs with N species preferentially removed over C species. However, the precise nitrogen group from which N is removed from g-C3N4 (C–N–C, [double bond, length as m-dash]NH or –NH2) is unclear. Moreover, the rate of degradation increases with decreasing electron acceleration voltage, suggesting that inelastic scattering events (radiolysis) dominate over elastic events (knock-on damage). The rate of degradation by removing N atoms is also sensitive to the current density. Hence, we demonstrate that both the electron acceleration voltage and the current density are parameters with which one can use to control the stoichiometry. Moreover, as N species were preferentially removed, the d-spacing of the carbon nitride structure increased. These findings provide a deeper understanding of g-C3N4.
  • Item
    Growth of all-carbon horizontally aligned single-walled carbon nanotubes nucleated from fullerene-based structures
    (London : BioMed Central, 2013) Ibrahim, Imad; Zhang, Yang; Popov, Alexey; Dunsch, Lothar; Büchner, Bernd; Cuniberti, Gianaurelio; Rümmeli, Mark H.
    All-carbon single-walled carbon nanotubes (SWCNTs) were successfully synthesized, nucleated using a fullerene derivative. A systematic investigation into the initial preparation of C60 fullerenes as growth nucleators for the SWCNTs was conducted. Enhancement in the yield of the produced SWCNT has been achieved with exploring different dispersing media for the fullerenes, the period, and environment of the initial thermal treatment of the fullerenes in addition to the use of different fullerene-based structures. The systematic studies significantly advance our understanding of the growth of the all-carbon catalyst-free single-walled carbon nanotubes. Field-effect transistors were fabricated using the catalyst-free SWCNT and then electrically characterized, showing current capacity as high as the well-studied catalyst-assisted nanotubes.
  • Item
    Flexible Piezoresistive Polystyrene Composite Sensors Filled with Hollow 3D Graphitic Shells
    (Basel : MDPI, 2023) Guzenko, Nataliia; Godzierz, Marcin; Kurtyka, Klaudia; Hercog, Anna; Nocoń-Szmajda, Klaudia; Gawron, Anna; Szeluga, Urszula; Trzebicka, Barbara; Yang, Ruizhi; Rümmeli, Mark H.
    The objective of this research was to develop highly effective conductive polymer composite (CPC) materials for flexible piezoresistive sensors, utilizing hollow three-dimensional graphitic shells as a highly conductive particulate component. Polystyrene (PS), a cost-effective and robust polymer widely used in various applications such as household appliances, electronics, automotive parts, packaging, and thermal insulation materials, was chosen as the polymer matrix. The hollow spherical three-dimensional graphitic shells (GS) were synthesized through chemical vapor deposition (CVD) with magnesium oxide (MgO) nanoparticles serving as a support, which was removed post-synthesis and employed as the conductive filler. Commercial multi-walled carbon nanotubes (CNTs) were used as a reference one-dimensional graphene material. The main focus of this study was to investigate the impact of the GS on the piezoresistive response of carbon/polymer composite thin films. The distribution and arrangement of GS and CNTs in the polymer matrix were analyzed using techniques such as X-ray diffraction and scanning electron microscopy, while the electrical, thermal, and mechanical properties of the composites were also evaluated. The results revealed that the PS composite films filled with GS exhibited a more pronounced piezoresistive response as compared to the CNT-based composites, despite their lower mechanical and thermal performance.
  • Item
    Crystal structure, synthesis and characterization of different chromium-based two-dimensional compounds
    (Riyadh : Saudi Chemical Soc., 2023) Hasan, Maria; Ta, Huy Q.; Ullah, Sami; Yang, Xiaoqin; Luo, Jingping; Bachmatiuk, Alicja; Gemming, Thomas; Trzebicka, Barbara; Mahmood, Azhar; Zeng, Mengqi; Fu, Lei; Liu, Lijun; Rümmeli, Mark H.
    The field of two dimensional (2D) materials experienced a surge of discoveries after the isolation of graphene. Among these, the transition metal compounds of Molybdenum and tungsten have been the most extensively studied materials after graphene. More recently, their group member chromium has only recently come to the limelight after the discovery of its exciting magnetic properties. As such the body of work surrounding 2D chromium-based materials is growing. Here, we present an up-to-date summary of the chromium 2D materials showing the latest advances in their experimental synthesis, characterization and the applications of 2D Chromium-based compounds. Finally, we conclude with a perspective on the future of 2D chromium-based materials. We believe that this study will be helpful to understand the field of chromium-based 2D compounds.
  • Item
    Large-Area Single-Crystal Graphene via Self-Organization at the Macroscale
    (Weinheim : Wiley-VCH, 2020) Ta, Huy Quang; Bachmatiuk, Alicja; Mendes, Rafael Gregorio; Perello, David J.; Zhao, Liang; Trzebicka, Barbara; Gemming, Thomas; Rotkin, Slava V.; Rümmeli, Mark H.
    In 1665 Christiaan Huygens first noticed how two pendulums, regardless of their initial state, would synchronize. It is now known that the universe is full of complex self-organizing systems, from neural networks to correlated materials. Here, graphene flakes, nucleated over a polycrystalline graphene film, synchronize during growth so as to ultimately yield a common crystal orientation at the macroscale. Strain and diffusion gradients are argued as the probable causes for the long-range cross-talk between flakes and the formation of a single-grain graphene layer. The work demonstrates that graphene synthesis can be advanced to control the nucleated crystal shape, registry, and relative alignment between graphene crystals for large area, that is, a single-crystal bilayer, and (AB-stacked) few-layer graphene can been grown at the wafer scale. © 2020 The Authors. Published by Wiley-VCH GmbH
  • Item
    Synthesis of Doped Porous 3D Graphene Structures by Chemical Vapor Deposition and Its Applications
    (Weinheim : Wiley-VCH, 2019) Ullah, Sami; Hasan, Maria; Ta, Huy Q.; Zhao, Liang; Shi, Qitao; Fu, Lei; Choi, Jinho; Yang, Ruizhi; Liu, Zhongfan; Rümmeli, Mark H.
    Graphene doping principally commenced to compensate for its inert nature and create an appropriate bandgap. Doping of 3D graphene has emerged as a topic of interest because of attempts to combine its large available surface area—arising from its interconnected porous architecture—with superior catalytic, structural, chemical, and biocompatible characteristics that can be induced by doping. In light of the latest developments, this review provides an overview of the scalable chemical vapor deposition (CVD)-based growth of doped 3D graphene materials as well as their applications in various contexts, such as in devices used for energy generation and gas storage and biosensors. In particular, single- and multielement doping of 3D graphene by various dopants (such as nitrogen (N), boron (B), sulfur (S) and phosphorous (P)), the doping configurations of the resultant materials, an overview of recent developments in the field of CVD, and the influence of various parameters of CVD on graphene doping and 3D morphologies are focused in this paper. Finally, this report concludes the discussion by mentioning the existing challenges and future opportunities of these developing graphitic materials, intending to inspire the unveiling of more exciting functionalized 3D graphene morphologies and their potential properties, which can hopefully realize many possible applications. © 2019 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim