Search Results

Now showing 1 - 10 of 26
  • Item
    In Situ Fabrication of Freestanding Single-Atom-Thick 2D Metal/Metallene and 2D Metal/ Metallene Oxide Membranes: Recent Developments
    (Weinheim : Wiley-VCH, 2021) Ta, Huy Q.; Mendes, Rafael G.; Liu, Yu; Yang, Xiaoqin; Luo, Jingping; Bachmatiuk, Alicja; Gemming, Thomas; Zeng, Mengqi; Fu, Lei; Liu, Lijun; Rümmeli, Mark H.
    In recent years, two-dimensional (2D) materials have attracted a lot of research interest as they exhibit several fascinating properties. However, outside of 2D materials derived from van der Waals layered bulk materials only a few other such materials are realized, and it remains difficult to confirm their 2D freestanding structure. Despite that, many metals are predicted to exist as 2D systems. In this review, the authors summarize the recent progress made in the synthesis and characterization of these 2D metals, so called metallenes, and their oxide forms, metallene oxides as free standing 2D structures formed in situ through the use of transmission electron microscopy (TEM) and scanning TEM (STEM) to synthesize these materials. Two primary approaches for forming freestanding monoatomic metallic membranes are identified. In the first, graphene pores as a means to suspend the metallene or metallene oxide and in the second, electron-beam sputtering for the selective etching of metal alloys or thick complex initial materials is employed to obtain freestanding single-atom-thick 2D metal. The data show a growing number of 2D metals/metallenes and 2D metal/ metallene oxides having been confirmed and point to a bright future for further discoveries of these 2D materials.
  • Item
    Controllable sliding transfer of wafer‐size graphene
    (Hoboken, NJ : Wiley, 2016) Lu, Wenjing; Zeng, Mengqi; Li, Xuesong; Wang, Jiao; Tan, Lifang; Shao, Miaomiao; Han, Jiangli; Wang, Sheng; Yue, Shuanglin; Zhang, Tao; Hu, Xuebo; Mendes, Rafael G.; Rümmeli, Mark H.; Peng, Lianmao; Liu, Zhongfan; Fu, Lei
    The innovative design of sliding transfer based on a liquid substrate can succinctly transfer high‐quality, wafer‐size, and contamination‐free graphene within a few seconds. Moreover, it can be extended to transfer other 2D materials. The efficient sliding transfer approach can obtain high‐quality and large‐area graphene for fundamental research and industrial applications.
  • Item
    Advances and Trends in Chemically Doped Graphene
    (Weinheim : Wiley-VCH, 2020) Ullah, Sami; Shi, Qitao; Zhou, Junhua; Yang, Xiaoqin; Ta, Huy Q.; Hasan, Maria; Ahmad, Nasir Mahmood; Fu, Lei; Bachmatiuk, Alicja; Rümmeli, Mark H.
    Chemically doped graphene materials are fascinating because these have different desirable attributes with possible synergy. The inert and gapless nature of graphene can be changed by adding a small number of heteroatoms to substitute carbon in the lattice. The doped material may display superior catalytic activities; durable, fast, and selective sensing; improved magnetic moments; photoresponses; and activity in chemical reactions. In the current review, recent advances are covered in chemically doped graphene. First, the different types of heteroatoms, their bonding configurations, and briefly their properties are discussed. This is followed by the description of various synthesis and analytical methods essential for assessing the characteristics of heterographene with specific focus on the selected graphene materials of different dopants (particularly, single dopants, including N, B, S, P, first three halogens, Ge, and Ga, and codopants, such as N/O), and more importantly, up-to-date applications enabled by the intentional doping. Finally, outlook and perspectives section review the existing challenges, future opportunities, and possible ways to improve the graphitic materials. The goal is to update and inspire the readers to establish novel doped graphene with valuable properties and for current and futuristic applications. © 2020 The Authors. Published by Wiley-VCH GmbH
  • Item
    Graphene-Like ZnO: A Mini Review
    (Basel : MDPI, 2016) Ta, Huy Q.; Zhao, Liang; Pohl, Darius; Pang, Jinbo; Trzebicka, Barbara; Rellinghaus, Bernd; Pribat, Didier; Gemming, Thomas; Liu, Zhongfan; Bachmatiuk, Alicja; Rümmeli, Mark H.
    The isolation of a single layer of graphite, known today as graphene, not only demonstrated amazing new properties but also paved the way for a new class of materials often referred to as two-dimensional (2D) materials. Beyond graphene, other 2D materials include h-BN, transition metal dichalcogenides (TMDs), silicene, and germanene, to name a few. All tend to have exciting physical and chemical properties which appear due to dimensionality effects and modulation of their band structure. A more recent member of the 2D family is graphene-like zinc oxide (g-ZnO) which also holds great promise as a future functional material. This review examines current progress in the synthesis and characterization of g-ZnO. In addition, an overview of works dealing with the properties of g-ZnO both in its pristine form and modified forms (e.g., nano-ribbon, doped material, etc.) is presented. Finally, discussions/studies on the potential applications of g-ZnO are reviewed and discussed.
  • Item
    A wafer-scale two-dimensional platinum monosulfide ultrathin film via metal sulfurization for high performance photoelectronics
    (Cambridge : Royal Society of Chemistry, 2022) Pang, Jinbo; Wang, Yanhao; Yang, Xiaoxin; Zhang, Lei; Li, Yufen; Zhang, Yu; Yang, Jiali; Yang, Feng; Wang, Xiao; Cuniberti, Gianaurelio; Liu, Hong; Rümmeli, Mark H.
    2D nonlayered materials have attracted enormous research interests due to their novel physical and chemical properties with confined dimensions. Platinum monosulfide as one of the most common platinum-group minerals has been less studied due to either the low purity in the natural product or the extremely high-pressure conditions for synthesis. Recently, platinum monosulfide (PtS) 2D membranes have emerged as rising-star materials for fundamental Raman and X-ray photoelectron spectral analysis as well as device exploration. However, a large-area homogeneous synthesis route has not yet been proposed and released. In this communication, we report a facile metal sulfurization strategy for the synthesis of a 4-inch wafer-scale PtS film. Enhanced characterization tools have been employed for thorough analysis of the crystal structure, chemical environment, vibrational modes, and atomic configuration. Furthermore, through theoretical calculations the phase diagram of the Pt–S compound has been plotted for showing the successful formation of PtS in our synthesis conditions. Eventually, a high-quality PtS film has been reflected in device demonstration by a photodetector. Our approach may shed light on the mass production of PtS films with precise control of their thickness and homogeneity as well as van der Waals heterostructures and related electronic devices.
  • Item
    Applications of MXenes in human-like sensors and actuators
    (New York, NY [u.a.] : Springer, 2022) Pang, Jinbo; Peng, Songang; Hou, Chongyang; Wang, Xiao; Wang, Ting; Cao, Yu; Zhou, Weijia; Sun, Ding; Wang, Kai; Rümmeli, Mark H.; Cuniberti, Gianaurelio; Liu, Hong
    Human beings perceive the world through the senses of sight, hearing, smell, taste, touch, space, and balance. The first five senses are prerequisites for people to live. The sensing organs upload information to the nervous systems, including the brain, for interpreting the surrounding environment. Then, the brain sends commands to muscles reflexively to react to stimuli, including light, gas, chemicals, sound, and pressure. MXene, as an emerging two-dimensional material, has been intensively adopted in the applications of various sensors and actuators. In this review, we update the sensors to mimic five primary senses and actuators for stimulating muscles, which employ MXene-based film, membrane, and composite with other functional materials. First, a brief introduction is delivered for the structure, properties, and synthesis methods of MXenes. Then, we feed the readers the recent reports on the MXene-derived image sensors as artificial retinas, gas sensors, chemical biosensors, acoustic devices, and tactile sensors for electronic skin. Besides, the actuators of MXene-based composite are introduced. Eventually, future opportunities are given to MXene research based on the requirements of artificial intelligence and humanoid robot, which may induce prospects in accompanying healthcare and biomedical engineering applications. [Figure not available: see fulltext.]
  • Item
    Applications of Carbon Nanotubes in the Internet of Things Era
    (Berlin ; Heidelberg [u.a.] : Springer, 2021) Pang, Jinbo; Bachmatiuk, Alicja; Yang, Feng; Liu, Hong; Zhou, Weijia; Rümmeli, Mark H.; Cuniberti, Gianaurelio
    The post-Moore's era has boosted the progress in carbon nanotube-based transistors. Indeed, the 5G communication and cloud computing stimulate the research in applications of carbon nanotubes in electronic devices. In this perspective, we deliver the readers with the latest trends in carbon nanotube research, including high-frequency transistors, biomedical sensors and actuators, brain-machine interfaces, and flexible logic devices and energy storages. Future opportunities are given for calling on scientists and engineers into the emerging topics.
  • Item
    A size dependent evaluation of the cytotoxicity and uptake of nanographene oxide
    (London [u.a.] : RSC, 2015) Mendes, Rafael Gregorio; Koch, Britta; Bachmatiuk, Alicja; Ma, Xing; Sanchez, Samuel; Damm, Christine; Schmidt, Oliver G.; Gemming, Thomas; Eckert, Jürgen; Rümmeli, Mark H.
    Graphene oxide (GO) has attracted great interest due to its extraordinary potential for biomedical application. Although it is clear that the naturally occurring morphology of biological structures is crucial to their precise interactions and correct functioning, the geometrical aspects of nanoparticles are often ignored in the design of nanoparticles for biological applications. A few in vitro and in vivo studies have evaluated the cytotoxicity and biodistribution of GO, however very little is known about the influence of flake size and cytotoxicity. Herein, we aim at presenting an initial cytotoxicity evaluation of different nano-sized GO flakes for two different cell lines (HeLa (Kyoto) and macrophage (J7742)) when they are exposed to samples containing different sized nanographene oxide (NGO) flakes (mean diameter of 89 and 277 nm). The obtained data suggests that the larger NGO flakes reduce cell viability as compared to smaller flakes. In addition, the viability reduction correlates with the time and the concentration of the NGO nanoparticles to which the cells are exposed. Uptake studies were also conducted and the data suggests that both cell lines internalize the GO nanoparticles during the incubation periods studied.
  • Item
    Tailoring the stoichiometry of C3N4 nanosheets under electron beam irradiation
    (Cambridge : RSC Publ., 2021) Mendes, Rafael G.; Ta, Huy Q.; Yang, Xiaoqin; Bachmatiuk, Alicja; Praus, Petr; Mamakhel, Aref; Iversen, Bo B.; Su, Ren; Gemming, Thomas; Rümmeli, Mark H.
    Two-dimensional polymeric graphitic carbon nitride (g-C3N4) is a low-cost material with versatile properties that can be enhanced by the introduction of dopant atoms and by changing the degree of polymerization/stoichiometry, which offers significant benefits for numerous applications. Herein, we investigate the stability of g-C3N4 under electron beam irradiation inside a transmission electron microscope operating at different electron acceleration voltages. Our findings indicate that the degradation of g-C3N4 occurs with N species preferentially removed over C species. However, the precise nitrogen group from which N is removed from g-C3N4 (C–N–C, [double bond, length as m-dash]NH or –NH2) is unclear. Moreover, the rate of degradation increases with decreasing electron acceleration voltage, suggesting that inelastic scattering events (radiolysis) dominate over elastic events (knock-on damage). The rate of degradation by removing N atoms is also sensitive to the current density. Hence, we demonstrate that both the electron acceleration voltage and the current density are parameters with which one can use to control the stoichiometry. Moreover, as N species were preferentially removed, the d-spacing of the carbon nitride structure increased. These findings provide a deeper understanding of g-C3N4.
  • Item
    Growth of all-carbon horizontally aligned single-walled carbon nanotubes nucleated from fullerene-based structures
    (London : BioMed Central, 2013) Ibrahim, Imad; Zhang, Yang; Popov, Alexey; Dunsch, Lothar; Büchner, Bernd; Cuniberti, Gianaurelio; Rümmeli, Mark H.
    All-carbon single-walled carbon nanotubes (SWCNTs) were successfully synthesized, nucleated using a fullerene derivative. A systematic investigation into the initial preparation of C60 fullerenes as growth nucleators for the SWCNTs was conducted. Enhancement in the yield of the produced SWCNT has been achieved with exploring different dispersing media for the fullerenes, the period, and environment of the initial thermal treatment of the fullerenes in addition to the use of different fullerene-based structures. The systematic studies significantly advance our understanding of the growth of the all-carbon catalyst-free single-walled carbon nanotubes. Field-effect transistors were fabricated using the catalyst-free SWCNT and then electrically characterized, showing current capacity as high as the well-studied catalyst-assisted nanotubes.