Search Results

Now showing 1 - 2 of 2
  • Item
    Relations between Structure, Activity and Stability in C3N4 Based Photocatalysts Used for Solar Hydrogen Production
    (Basel : MDPI, 2018-1-29) Sivasankaran, Ramesh P.; Rockstroh, Nils; Hollmann, Dirk; Kreyenschulte, Carsten R.; Agostini, Giovanni; Lund, Henrik; Acharjya, Amitava; Rabeah, Jabor; Bentrup, Ursula; Junge, Henrik; Thomas, Arne; Brückner, Angelika
    Solar hydrogen production from water could be a sustainable and environmentally friendly alternative to fossil energy carriers, yet so far photocatalysts active and stable enough for large-scale applications are not available, calling for advanced research efforts. In this work, H2 evolution rates of up to 1968 and 5188 μmol h−1 g−1 were obtained from aqueous solutions of triethanolamine (TEOA) and oxalic acid (OA), respectively, by irradiating composites of AgIn5S8 (AIS), mesoporous C3N4 (CN, surface area >150 m2/g) and ≤2 wt.% in-situ photodeposited Pt nanoparticles (NPs) with UV-vis (≥300 nm) and pure visible light (≥420 nm). Structural properties and electron transport in these materials were analyzed by XRD, STEM-HAADF, XPS, UV-vis-DRS, ATR-IR, photoluminescence and in situ-EPR spectroscopy. Initial H2 formation rates were highest for Pt/CN, yet with TEOA this catalyst deactivated by inclusion of Pt NPs in the matrix of CN (most pronounced at λ ≥ 300 nm) while it remained active with OA, since in this case Pt NPs were enriched on the outermost surface of CN. In Pt/AIS-CN catalysts, Pt NPs were preferentially deposited on the surface of the AIS phase which prevents them from inclusion in the CN phase but reduces simultaneously the initial H2 evolution rate. This suggests that AIS hinders transport of separated electrons from the CN conduction band to Pt NPs but retains the latter accessible by protons to produce H2.
  • Item
    Role of SrCO3 on Photocatalytic Performance of SrTiO3-SrCO3 Composites
    (Basel : MDPI, 2022) Boga, Bíborka; Steinfeldt, Norbert; Moustakas, Nikolaos G.; Peppel, Tim; Lund, Henrik; Rabeah, Jabor; Pap, Zsolt; Cristea, Vasile-Mircea; Strunk, Jennifer
    Perovskites such as SrTiO3 are interesting for photocatalytic applications due to their structure-related and electronic properties. These properties are influenced by the presence of SrCO3 which is often formed simultaneously during the hydrothermal synthesis of SrTiO3. In this study, SrTiO3-SrCO3 composites with different contents of SrCO3 (5–24 wt%) were synthesized. Their morphological, structural, and optical properties were investigated using complementary methods such as scanning electron microscopy (SEM), X-ray diffraction (XRD), nitrogen sorption, and diffuse reflectance spectroscopy (DRS). Their photocatalytic activity was assessed during the degradation of diclofenac (DCFNa) in aqueous solution and CO2 photoreduction under Xe lamp irradiation. Improved photocatalytic efficiency in DCFNa degradation was observed for all the studied composites in comparison with SrTiO3, and the highest mineralization efficiency was obtained for the sample with 21 wt% SrCO3 content. The presence of SrCO3 led to an increased concentration of active species, such as •OH radicals. Otherwise, its presence inhibits CH4 and C2H6 production during CO2 photoreduction compared with pure SrTiO3.