Search Results

Now showing 1 - 3 of 3
  • Item
    A multi-mode delay differential equation model for lasers with optical feedback
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2016) Radziunas, Mindaugas
    In this paper, we discuss the relations between the spatially-distributed traveling wave, Lang-Kobayashi, and a new multi-mode delay differential equation models for Fabry-Perot type semiconductor diode lasers with an external optical feedback. All these models govern the dynamics of the slowly varying complex amplitudes of the optical fields and carrier density. To compare the models, we calculate the cavity modes determined by the threshold carrier density and optical frequency of the steady states in all three models. These calculations show that the Lang-Kobayashi type model is in good agreement with the traveling wave model only for the small feedback regimes, whereas newly derived multi-mode delay differential equation model remains correct even at moderate and large optical feedback regimes.
  • Item
    Efficient coupling of electro-optical and heat-transport models for broad-area semiconductor lasers
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2018) Radziunas, Mindaugas; Fuhrmann, Jürgen; Zeghuzi, Anissa; Wünsche, Hans-Jürgen; Koprucki, Thomas; Brée, Carsten; Wenzel, Hans; Bandelow, Uwe
    In this work, we discuss the modeling of edge-emitting high-power broad-area semiconductor lasers. We demonstrate an efficient iterative coupling of a slow heat transport (HT) model defined on multiple vertical-lateral laser cross-sections with a fast dynamic electro-optical (EO) model determined on the longitudinal-lateral domain that is a projection of the device to the active region of the laser. Whereas the HT-solver calculates temperature and thermally-induced refractive index changes, the EO-solver exploits these distributions and provides time-averaged field intensities, quasi-Fermi potentials, and carrier densities. All these time-averaged distributions are used repetitively by the HT-solver for the generation of the heat sources entering the HT problem solved in the next iteration step.
  • Item
    Efficient coupling of inhomogeneous current spreading and dynamic electro-optical models for broad-area edge-emitting semiconductor devices
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2017) Radziunas, Mindaugas; Zeghuzi, Anissa; Fuhrmann, Jürgen; Koprucki, Thomas; Wünsche, Hans-Jürgen; Wenzel, Hans; Bandelow, Uwe
    We extend a 2 (space) + 1 (time)-dimensional traveling wave model for broad-area edgeemitting semiconductor lasers by a model for inhomogeneous current spreading from the contact to the active zone of the laser. To speedup the performance of the device simulations, we suggest and discuss several approximations of the inhomogeneous current density in the active zone.