Search Results

Now showing 1 - 4 of 4
  • Item
    Time-dependent simulation of thermal lensing in high-power broad-area semiconductor lasers
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2019) Zeghuzi, Anissa; Wünsche, Hans-Jürgen; Wenzel, Hans; Radziunas, Mindaugas; Fuhrmann, Jürgen; Klehr, Andreas; Bandelow, Uwe; Knigge, Andrea
    We propose a physically realistic and yet numerically applicable thermal model to account for short and long term self-heating within broad-area lasers. Although the temperature increase is small under pulsed operation, a waveguide that is formed within a few-ns-long pulse can result in a transition from a gain-guided to an index-guided structure, leading to near and far field narrowing. Under continuous wave operation the longitudinally varying temperature profile is obtained self-consistently. The resulting unfavorable narrowing of the near field can be successfully counteracted by etching trenches.
  • Item
    Mode competition in broad-ridge-waveguide lasers
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2020) Köster, Jan-Philipp; Putz, Alexander; Wenzel, Hans; Wünsche, Hans-Jürgen; Radziunas, Mindaugas; Stephan, Holger; Wilkens, Martin; Zeghuzi, Anissa; Knigge, Andrea
    The lateral brightness achievable with high-power GaAs-based laser diodes having long and broad waveguides is commonly regarded to be limited by the onset of higher-order lateral modes. For the study of the lateral-mode competition two complementary simulation tools are applied, representing different classes of approximations. The first tool bases on a completely incoherent superposition of mode intensities and disregards longitudinal effects like spatial hole burning, whereas the second tool relies on a simplified carrier transport and current flow. Both tools yield agreeing power-current characteristics that fit the data measured for 5 to 23 µm wide ridges. Also, a similarly good qualitative conformance of the near and far fields is found. However, the threshold of individual modes, the partition of power between them at a given current, and details of the near and far fields show differences. These differences are the consequence of a high sensitivity of the mode competition to details of the models and of the device structure. Nevertheless, it can be concluded concordantly that the brightness rises with increasing ridge width irrespective of the onset of more and more lateral modes. The lateral brightness 2W · mm¯¹ 1mrad¯¹ at 10MW · cm¯²2 power density on the front facet of the investigated laser with widest ridge (23 µm) is comparable with best values known from much wider broad-area lasers. In addition, we show that one of the simulation tools is able to predict beam steering and coherent beam.
  • Item
    Spatially modulated broad-area lasers for narrow lateral far-field divergence
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2021) Zeghuzi, Anissa; Koester, Jan-Philipp; Radziunas, Mindaugas; Christopher, Heike; Wenzel, Hans; Knigge, Andrea
    A novel laser design is presented that combines a longitudinal-lateral gain-loss modulation with an additional phase tailoring achieved by etching rectangular trenches. At 100 A pulsed operation, simulations predict a far-field profile with 0.3-degree full width at half maximum where a 0.4-degree-wide main lobe contains 40% of the emitted optical output power. While far-field measurements of these structured lasers emitting 10 ns long pulses with 35 W peak power confirm a substantial enhancement of radiation within the central one-degree angular range, the measured far-field intensity outside of the obtained central peak remains high.
  • Item
    Simulation and design of a compact GaAs based tunable dual-wavelength diode laser system
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2019) Koester, Jan-Philipp; Radziunas, Mindaugas; Zeghuzi, Anissa; Wenzel, Hans; Knigge, Andrea
    We present our design of a compact, integrated and tunable dual-wavelength diode laser system emitting around 785 nm, which is of interest for several applications like Raman spectroscopy and the generation of THz radiation. To achieve a more compact device compared to previous GaAs based designs two etch depths are realized, leading to shallowly etched ridge waveguides in regions were optical gain is applied and deeply etched waveguides used to enable compact integrated waveguide components. The device parameters are optimized using a numerically efficient simulation tool for passive waveguides. Subsequently, the entire laser system is further analyzed applying a sophisticated traveling-wave equation based model for active devices giving access to internal intensity and carrier density distributions. It is shown that active laser simulations are crucial to deduce critical and performance limiting design aspects not accessible via an all-passive simulation.