Search Results

Now showing 1 - 10 of 13
  • Item
    Study of wavelength switching time in tunable semiconductor micro-ring lasers: experiment and travelling wave description
    (Washington, DC : OSA, 2018) Khoder, Mulham; Radziunas, Mindaugas; Tronciu, Vasile; Verschaffelt, Guy
    We report in this paper the wavelength switching features of semiconductor ring lasers that are wavelength tunable based on filtered optical feedback. The filtered feedback provides a wavelength dependent loss mechanism in these devices with which a particular longitudinal mode, and thus a particular wavelength, can be selected by changing the filter characteristics of the feedback channel. We investigate how the wavelength switching speed depends on the amplitude of the modulation of the switching driving signal and on the different phase factors within the filtering branches of the SRL. We compare qualitatively the experimental results with numerical simulations based on a travelling wave model. We also investigate the dynamical behavior of the lasing and nonlasing longitudinal modes in the two channels of the clockwise and the counter-clockwise directions. We show the crucial importance of various phase relation factors on the wavelength switching behavior. Finally, we discuss what limits the switching speed and how we can accelerate it.
  • Item
    Spatially modulated broad-area lasers for narrow lateral far-field divergence
    (Washington, DC : Soc., 2021) Zeghuzi, Anissa; Koester, Jan-Philipp; Radziunas, Mindaugas; Christopher, Heike; Wenzel, Hans; Knigge, Andrea
    A novel laser design is presented that combines a longitudinal-lateral gain-loss modulation with an additional phase tailoring achieved by etching rectangular trenches. At 100 A pulsed operation, simulations predict a far-field profile with 0.3° full width at half maximum (ΘFWHM=0.3∘) where a 0.4°-wide main lobe contains 40% of the emitted optical output power (Θ40%=0.4∘). While far-field measurements of these structured lasers emitting 10 ns long pulses with 35 W peak power confirm a substantial enhancement of radiation within the central 1∘ angular range, the measured far-field intensity outside of the obtained central peak remains high.
  • Item
    Semiconductor laser linewidth theory revisited
    (Basel : MDPI, 2021) Wenzel, Hans; Kantner, Markus; Radziunas, Mindaugas; Bandelow, Uwe
    More and more applications require semiconductor lasers distinguished not only by large modulation bandwidths or high output powers, but also by small spectral linewidths. The theoretical understanding of the root causes limiting the linewidth is therefore of great practical relevance. In this paper, we derive a general expression for the calculation of the spectral linewidth step by step in a self-contained manner. We build on the linewidth theory developed in the 1980s and 1990s but look from a modern perspective, in the sense that we choose as our starting points the time-dependent coupled-wave equations for the forward and backward propagating fields and an expansion of the fields in terms of the stationary longitudinal modes of the open cavity. As a result, we obtain rather general expressions for the longitudinal excess factor of spontaneous emission (K-factor) and the effective α-factor including the effects of nonlinear gain (gain compression) and refractive index (Kerr effect), gain dispersion, and longitudinal spatial hole burning in multi-section cavity structures. The effect of linewidth narrowing due to feedback from an external cavity often described by the so-called chirp reduction factor is also automatically included. We propose a new analytical formula for the dependence of the spontaneous emission on the carrier density avoiding the use of the population inversion factor. The presented theoretical framework is applied to a numerical study of a two-section distributed Bragg reflector laser.
  • Item
    Simulation and design of a compact GaAs based tunable dual-wavelength diode laser system
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2019) Koester, Jan-Philipp; Radziunas, Mindaugas; Zeghuzi, Anissa; Wenzel, Hans; Knigge, Andrea
    We present our design of a compact, integrated and tunable dual-wavelength diode laser system emitting around 785 nm, which is of interest for several applications like Raman spectroscopy and the generation of THz radiation. To achieve a more compact device compared to previous GaAs based designs two etch depths are realized, leading to shallowly etched ridge waveguides in regions were optical gain is applied and deeply etched waveguides used to enable compact integrated waveguide components. The device parameters are optimized using a numerically efficient simulation tool for passive waveguides. Subsequently, the entire laser system is further analyzed applying a sophisticated traveling-wave equation based model for active devices giving access to internal intensity and carrier density distributions. It is shown that active laser simulations are crucial to deduce critical and performance limiting design aspects not accessible via an all-passive simulation.
  • Item
    Additive splitting methods for parallel solution of evolution problems
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2020) Amiranashvili, Shalva; Radziunas, Mindaugas; Bandelow, Uwe; Busch, Kurt; Čiegis, Raimondas
    We demonstrate how a multiplicative splitting method of order P can be used to construct an additive splitting method of order P + 3. The weight coefficients of the additive method depend only on P, which must be an odd number. Specifically we discuss a fourth-order additive method, which is yielded by the Lie-Trotter splitting. We provide error estimates, stability analysis, and numerical examples with the special discussion of the parallelization properties and applications to nonlinear optics.
  • Item
    Numerical study of coherence of optical feedback in semiconductor laser dynamics
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2019) Radziunas, Mindaugas; Little, Douglas J.; Kane, Deborah M.
    The nonlinear dynamics of semiconductor laser with coherent, as compared to incoherent, delayed optical feedback systems have been discussed and contrasted in prior research literature. Here, we report simulations of how the dynamics change as the coherence of the optical feedback is systematically varied from being coherent to incoherent. An increasing rate of phase disturbance is used to vary the coherence. An edge emitting, 830nm, Fabry Perot semiconductor laser with a long external cavity is simulated. Following this study, consideration of prior and future experimental studies should include evaluation of where on the continuum of partial coherence the delayed optical feedback sits. Partial coherence is a parameter that will affect the dynamics.
  • Item
    Time-dependent simulation of thermal lensing in high-power broad-area semiconductor lasers
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2019) Zeghuzi, Anissa; Wünsche, Hans-Jürgen; Wenzel, Hans; Radziunas, Mindaugas; Fuhrmann, Jürgen; Klehr, Andreas; Bandelow, Uwe; Knigge, Andrea
    We propose a physically realistic and yet numerically applicable thermal model to account for short and long term self-heating within broad-area lasers. Although the temperature increase is small under pulsed operation, a waveguide that is formed within a few-ns-long pulse can result in a transition from a gain-guided to an index-guided structure, leading to near and far field narrowing. Under continuous wave operation the longitudinally varying temperature profile is obtained self-consistently. The resulting unfavorable narrowing of the near field can be successfully counteracted by etching trenches.
  • Item
    Traveling wave analysis of non-thermal far-field blooming in high-power broad-area lasers
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2019) Zeghuzi, Anissa; Radziunas, Mindaugas; Wünsche, Hans-Jürgen; Koester, Jan-Philipp; Wenzel, Hans; Bandelow, Uwe; Knigge, Andrea
    With rising current the lateral far-field angle of high-power broad-area lasers widens (far-field blooming) which can be partly attributed to non-thermal effects due to carrier induced refractive index and gain changes that become the dominant mechanism under pulsed operation. To analyze the non-thermal contribution to far-field blooming we use a traveling wave based model that properly describes the injection of the current into and the diffusion of the carriers within the active region. Although no pre-assumptions regarding the modal composition of the field is made and filamentation is automatically accounted for, the highly dynamic time-dependent optical field distribution can be very well represented by only few modes of the corresponding stationary waveguide equation obtained by a temporal average of the carrier density and field intensity. The reduction of current spreading and spatial holeburning by selecting proper design parameters can substantially improve the beam quality of the laser.
  • Item
    Beam combining scheme for high-power broad-area semiconductor lasers with Lyot-filtered reinjection: Modeling, simulations, and experiments
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2019) Brée, Carsten; Raab, Volker; Montiel-Ponsoda, Joan; Garre-Werner, Guillermo; Staliunas, Kestutis; Bandelow, Uwe; Radziunas, Mindaugas
    A brightness- and power-scalable polarization beam combining scheme for high-power, broadarea semiconductor laser diodes is investigated numerically and experimentally. To achieve the beam combining, we employ Lyot-filtered optical reinjection from an external cavity, which forces lasing of the individual diodes on interleaved frequency combs with overlapping envelopes and enables a high optical coupling efficiency. Unlike conventional spectral beam combining schemes with diffraction gratings, the optical coupling efficiency is insensitive to thermal drifts of laser wavelengths. This scheme can be used for efficient coupling of a large number of laser diodes and paves the way towards using broad-area laser diode arrays for cost-efficient material processing, which requires high-brilliance emission and optical powers in the kW-regime.
  • Item
    Dynamics in high-power diode lasers
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2020) Bandelow, Uwe; Radziunas, Mindaugas; Zeghuzi, Anissa; Wünsche, Hans-Jürgen; Wenzel, Hans
    High-power broad-area diode lasers (BALs) exhibit chaotic spatio-temporal dynamics above threshold. Under high power operation, where they emit tens of watts output, large amounts of heat are generated, with significant impact on the laser operation. We incorporate heating effects into a dynamical electro-optical (EO) model for the optical field and carrier dynamics along the quantum-well active zone of the laser. Thereby we effectively couple the EO and heat-transport (HT) solvers. Thermal lensing is included by a thermally-induced contribution to the index profile. The heat sources obtained with the dynamic EO-solver exhibit strong variations on short time scales, which however have only a marginal impact on the temperature distribution. We consider two limits: First, the static HT-problem, with time-averaged heat sources, which is solved iteratively together with the EO solver. Second, under short pulse operation the thermally induced index distribution can be obtained by neglecting heat flow. Although the temperature increase is small, a waveguide is introduced here within a few-ns-long pulse resulting in significant near field narrowing. We further show that a beam propagating in a waveguide structure utilized for BA lasers does not undergo filamentation due to spatial holeburning. Moreover, our results indicate that in BALs a clear optical mode structure is visible which is neither destroyed by the dynamics nor by longitudinal effects.