Search Results

Now showing 1 - 10 of 15
  • Item
    Change points of global temperature
    (Bristol : IOP Publ., 2015) Cahill, Niamh; Rahmstorf, Stefan; Parnell, Andrew C.
    We aim to address the question of whether or not there is a significant recent 'hiatus', 'pause' or 'slowdown' of global temperature rise. Using a statistical technique known as change point (CP) analysis we identify the changes in four global temperature records and estimate the rates of temperature rise before and after these changes occur. For each record the results indicate that three CPs are enough to accurately capture the variability in the data with no evidence of any detectable change in the global warming trend since ∼1970. We conclude that the term 'hiatus' or 'pause' cannot be statistically justified.
  • Item
    Extreme weather events in early summer 2018 connected by a recurrent hemispheric wave-7 pattern
    (Bristol : IOP Publ., 2019) Kornhuber, Kai; Osprey, Scott; Coumou, Dim; Petri, Stefan; Petoukhov, Vladimir; Rahmstorf, Stefan; Gray, Lesley
    The summer of 2018 witnessed a number of extreme weather events such as heatwaves in North America, Western Europe and the Caspian Sea region, and rainfall extremes in South-East Europe and Japan that occurred near-simultaneously. Here we show that some of these extremes were connected by an amplified hemisphere-wide wavenumber 7 circulation pattern. We show that this pattern constitutes an important teleconnection in Northern Hemisphere summer associated with prolonged and above-normal temperatures in North America, Western Europe and the Caspian Sea region. This pattern was also observed during the European heatwaves of 2003, 2006 and 2015 among others. We show that the occurrence of this wave 7 pattern has increased over recent decades.
  • Item
    Global temperature evolution: Recent trends and some pitfalls
    (Bristol : IOP Publishing, 2017) Rahmstorf, Stefan; Foster, Grant; Cahill, Niamh
    Global surface temperatures continue to rise. In most surface temperature data sets, the years 2014, 2015 and again 2016 set new global heat records since the start of regular measurements. Never before have three record years occurred in a row. We show that this recent streak of record heat does not in itself provide statistical evidence for an acceleration of global warming, nor was it preceded by a 'slowdown period' with a significantly reduced rate of warming. Rather, the data are fully consistent with a steady global warming trend since the 1970s, superimposed with random, stationary, short-term variability. All recent variations in short-term trends are well within what was to be expected, based on the observed warming trend and the observed variability from the 1970s up to the year 2000. We discuss some pitfalls of statistical analysis of global temperatures which have led to incorrect claims of an unexpected or significant warming slowdown.
  • Item
    Predictability of twentieth century sea-level rise from past data
    (Bristol : IOP Publishing, 2013) Bittermann, Klaus; Rahmstorf, Stefan; Perrette, Mahé; Vermeer, Martin
    The prediction of global sea-level rise is one of the major challenges of climate science. While process-based models are still being improved to capture the complexity of the processes involved, semi-empirical models, exploiting the observed connection between global-mean sea level and global temperature and calibrated with data, have been developed as a complementary approach. Here we investigate whether twentieth century sea-level rise could have been predicted with such models given a knowledge of twentieth century global temperature increase. We find that either proxy or early tide gauge data do not hold enough information to constrain the model parameters well. However, in combination, the use of proxy and tide gauge sea-level data up to 1900 AD allows a good prediction of twentieth century sea-level rise, despite this rise being well outside the rates experienced in previous centuries during the calibration period of the model. The 90% confidence range for the linear twentieth century rise predicted by the semi-empirical model is 13–30 cm, whereas the observed interval (using two tide gauge data sets) is 14–26 cm.
  • Item
    Global mean sea-level rise in a world agreed upon in Paris
    (Bristol : IOP Publishing, 2017) Bittermann, Sebastian; Rahmstorf, Stefan; Kopp, Robert E.; Kemp, Andrew C.
    Although the 2015 Paris Agreement seeks to hold global average temperature to 'well below 2 °C above pre-industrial levels and to pursue efforts to limit the temperature increase to 1.5 °C above pre-industrial levels', projections of global mean sea-level (GMSL) rise commonly focus on scenarios in which there is a high probability that warming exceeds 1.5 °C. Using a semi-empirical model, we project GMSL changes between now and 2150 CE under a suite of temperature scenarios that satisfy the Paris Agreement temperature targets. The projected magnitude and rate of GMSL rise varies among these low emissions scenarios. Stabilizing temperature at 1.5 °C instead of 2 °C above preindustrial reduces GMSL in 2150 CE by 17 cm (90% credible interval: 14–21 cm) and reduces peak rates of rise by 1.9 mm yr−1 (90% credible interval: 1.4–2.6 mm yr−1). Delaying the year of peak temperature has little long-term influence on GMSL, but does reduce the maximum rate of rise. Stabilizing at 2 °C in 2080 CE rather than 2030 CE reduces the peak rate by 2.7 mm yr−1 (90% credible interval: 2.0–4.0 mm yr−1).
  • Item
    Comparing climate projections to observations up to 2011
    (Bristol : IOP Publishing, 2012) Rahmstorf, Stefan; Foster, Grant; Cazenave, Anny
    We analyse global temperature and sea-level data for the past few decades and compare them to projections published in the third and fourth assessment reports of the Intergovernmental Panel on Climate Change (IPCC). The results show that global temperature continues to increase in good agreement with the best estimates of the IPCC, especially if we account for the effects of short-term variability due to the El Niño/Southern Oscillation, volcanic activity and solar variability. The rate of sea-level rise of the past few decades, on the other hand, is greater than projected by the IPCC models. This suggests that IPCC sea-level projections for the future may also be biased low.
  • Item
    The concerns of the young protesters are justified: A statement by Scientists for Future concerning the protests for more climate protection
    (München : Oekom Verl., 2019) Hagedorn, Gregor; Loew, Thomas; Seneviratne, Sonia I.; Lucht, Wolfgang; Beck, Marie-Luise; Hesse, Janina; Knutti, Reto; Quaschning, Volker; Schleimer, Jan-Hendrik; Mattauch, Linus; Breyer, Christian; Hübener, Heike; Kirchengast, Gottfried; Chodura, Alice; Clausen, Jens; Creutzig, Felix; Darbi, Marianne; Daub, Claus-Heinrich; Ekardt, Felix; Göpel, Maja; Hardt, Judith N.; Hertin, Julia; Hickler, Thomas; Köhncke, Arnulf; Köster, Stephan; Krohmer, Julia; Kromp-Kolb, Helga; Leinfelder, Reinhold; Mederake, Linda; Neuhaus, Michael; Rahmstorf, Stefan; Schmidt, Christine; Schneider, Christoph; Schneider, Gerhard; Seppelt, Ralf; Spindler, Uli; Springmann, Marco; Staab, Katharina; Stocker, Thomas F.; Steininger, Karl; Hirschhausen, Eckart von; Winter, Susanne; Wittau, Martin; Zens, Josef
    In March 2019, German-speaking scientists and scholars calling themselves Scientists for Future, published a statement in support of the youth protesters in Germany, Austria, and Switzerland (Fridays for Future, Klimastreik/Climate Strike), verifying the scientific evidence that the youth protestors refer to. In this article, they provide the full text of the statement, including the list of supporting facts (in both English and German) as well as an analysis of the results and impacts of the statement. Furthermore, they reflect on the challenges for scientists and scholars who feel a dual responsibility: on the one hand, to remain independent and politically neutral, and, on the other hand, to inform and warn societies of the dangers that lie ahead. © 2019 G. Hagedorn et al.; licensee oekom verlag.This Open Access article is published under the terms of the Creative Commons Attribution License CCBY4.0 (http://creativecommons.org/licenses/by/4.0).
  • Item
    The ‘pause’ in global warming in historical context: (II). Comparing models to observations
    (Bristol : IOP Publ., 2018) Lewandowsky, Stephan; Cowtan, Kevin; Risbey, James S; Mann, Michael E; Steinman, Byron A; Oreskes, Naomi; Rahmstorf, Stefan
    We review the evidence for a putative early 21st-century divergence between global mean surface temperature (GMST) and Coupled Model Intercomparison Project Phase 5 (CMIP5) projections. We provide a systematic comparison between temperatures and projections using historical versions of GMST products and historical versions of model projections that existed at the times when claims about a divergence were made. The comparisons are conducted with a variety of statistical techniques that correct for problems in previous work, including using continuous trends and a Monte Carlo approach to simulate internal variability. The results show that there is no robust statistical evidence for a divergence between models and observations. The impression of a divergence early in the 21st century was caused by various biases in model interpretation and in the observations, and was unsupported by robust statistics.
  • Item
    Author Correction: Estimating global mean sea-level rise and its uncertainties by 2100 and 2300 from an expert survey
    (London : Springer Nature, 2020) Horton, Benjamin P.; Khan, Nicole S.; Cahill, Niamh; Lee, Janice S. H.; Shaw, Timothy A.; Garner, Andra J.; Kem, Andrew C; Engelhart, Simon E.; Rahmstorf, Stefan
    An amendment to this paper has been published and can be accessed via a link at the top of the paper. © 2020, The Author(s).
  • Item
    Estimating global mean sea-level rise and its uncertainties by 2100 and 2300 from an expert survey
    (London : Springer Nature, 2020) Horton, Benjamin P.; Khan, Nicole S.; Cahill, Niamh; Lee, Janice S. H.; Shaw, Timothy A.; Garner, Andra J.; Kemp, Andrew C.; Engelhart, Simon E.; Rahmstorf, Stefan
    Sea-level rise projections and knowledge of their uncertainties are vital to make informed mitigation and adaptation decisions. To elicit projections from members of the scientific community regarding future global mean sea-level (GMSL) rise, we repeated a survey originally conducted five years ago. Under Representative Concentration Pathway (RCP) 2.6, 106 experts projected a likely (central 66% probability) GMSL rise of 0.30–0.65 m by 2100, and 0.54–2.15 m by 2300, relative to 1986–2005. Under RCP 8.5, the same experts projected a likely GMSL rise of 0.63–1.32 m by 2100, and 1.67–5.61 m by 2300. Expert projections for 2100 are similar to those from the original survey, although the projection for 2300 has extended tails and is higher than the original survey. Experts give a likelihood of 42% (original survey) and 45% (current survey) that under the high-emissions scenario GMSL rise will exceed the upper bound (0.98 m) of the likely range estimated by the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, which is considered to have an exceedance likelihood of 17%. Responses to open-ended questions suggest that the increases in upper-end estimates and uncertainties arose from recent influential studies about the impact of marine ice cliff instability on the meltwater contribution to GMSL rise from the Antarctic Ice Sheet. © 2020, The Author(s).