Search Results

Now showing 1 - 2 of 2
  • Item
    Future air pollution in the Shared Socio-economic Pathways
    (Amsterdam : Elsevier, 2016) Rao, Shilpa; Klimont, Zbigniew; Smith, Steven J.; Van Dingenen, Rita; Dentener, Frank; Bouwman, Lex; Riahi, Keywan; Amann, Markus; Bodirsky, Benjamin Leon; van Vuuren, Detlef P.; Aleluia Reis, Lara; Calvin, Katherine; Drouet, Laurent; Fricko, Oliver; Fujimori, Shinichiro; Gernaat, David; Havlik, Petr; Harmsen, Mathijs; Hasegawa, Tomoko; Heyes, Chris; Hilaire, Jérôme; Luderer, Gunnar; Masui, Toshihiko; Stehfest, Elke; Strefler, Jessica; van der Sluis, Sietske; Tavoni, Massimo
    Emissions of air pollutants such as sulfur and nitrogen oxides and particulates have significant health impacts as well as effects on natural and anthropogenic ecosystems. These same emissions also can change atmospheric chemistry and the planetary energy balance, thereby impacting global and regional climate. Long-term scenarios for air pollutant emissions are needed as inputs to global climate and chemistry models, and for analysis linking air pollutant impacts across sectors. In this paper we present methodology and results for air pollutant emissions in Shared Socioeconomic Pathways (SSP) scenarios. We first present a set of three air pollution narratives that describe high, central, and low pollution control ambitions over the 21st century. These narratives are then translated into quantitative guidance for use in integrated assessment models. The resulting pollutant emission trajectories under the SSP scenarios cover a wider range than the scenarios used in previous international climate model comparisons. In the SSP3 and SSP4 scenarios, where economic, institutional and technological limitations slow air quality improvements, global pollutant emissions over the 21st century can be comparable to current levels. Pollutant emissions in the SSP1 scenarios fall to low levels due to the assumption of technological advances and successful global action to control emissions.
  • Item
    Making or breaking climate targets: The AMPERE study on staged accession scenarios for climate policy
    (Amsterdam [u.a.] : Elsevier Science, 2014) Kriegler, Elmar; Riahi, Keywan; Bauer, Nico; Schwanitz, Valeria Jana; Petermann, Nils; Bosetti, Valentina; Marcucci, Adriana; Otto, Sander; Paroussos, Leonidas; Rao, Shilpa; Currás, Tabaré Arroyo; Ashina, Shuichi; Bollen, Johannes; Eom, Jiyong; Hamdi-Cherif, Meriem; Longden, Thomas; Kitous, Alban; Méjean, Aurélie; Sano, Fuminori; Schaeffer, Michiel; Wada, Kenichi; Capros, Pantelis; van Vuuren, Detlef P.; Edenhofer, Ottmar
    This study explores a situation of staged accession to a global climate policy regime from the current situation of regionally fragmented and moderate climate action. The analysis is based on scenarios in which a front runner coalition – the EU or the EU and China – embarks on immediate ambitious climate action while the rest of the world makes a transition to a global climate regime between 2030 and 2050. We assume that the ensuing regime involves strong mitigation efforts but does not require late joiners to compensate for their initially higher emissions. Thus, climate targets are relaxed, and although staged accession can achieve significant reductions of global warming, the resulting climate outcome is unlikely to be consistent with the goal of limiting global warming to 2 degrees. The addition of China to the front runner coalition can reduce pre-2050 excess emissions by 20–30%, increasing the likelihood of staying below 2 degrees. Not accounting for potential co-benefits, the cost of front runner action is found to be lower for the EU than for China. Regions that delay their accession to the climate regime face a trade-off between reduced short term costs and higher transitional requirements due to larger carbon lock-ins and more rapidly increasing carbon prices during the accession period.