Search Results

Now showing 1 - 5 of 5
  • Item
    Turbulent energy dissipation rates observed by Doppler MST Radar and by rocket-borne instruments during the MIDAS/MaCWAVE campaign 2002
    (Göttingen : Copernicus GmbH, 2005) Engler, N.; Latteck, R.; Strelnikov, B.; Singer, W.; Rapp, M.
    During the MIDAS/MaCWAVE campaign in summer 2002 we have observed turbulence using Doppler beam steering measurements obtained from the ALWIN VHF radar at Andøya/Northern Norway. This radar was operated in the Doppler beam steering mode for turbulence investigations during the campaign, as well as in spaced antenna mode, for continuously measuring the background wind field. The real-time data analysis of the Doppler radar backscattering provided the launch conditions for the sounding rockets. The spectral width data observed during the occurrence of PMSE were corrected for beam and shear broadening caused by the background wind field to obtain the turbulent part of the spectral width. The turbulent energy dissipation rates determined from the turbulent spectral width vary between 5 and 100 m Wkg-1 in the altitude range of 80-92 km and increase with altitude. These estimations agree well with the in-situ measurements using the CONE sensor which was launched on 3 sounding rockets during the campaign.
  • Item
    The thermal and dynamical state of the atmosphere during polar mesosphere winter echoes
    (München : European Geopyhsical Union, 2006) Lübken, F.-J.; Strelnikov, B.; Rapp, M.; Singer, W.; Latteck, R.; Brattli, A.; Hoppe, U.-P.; Friedrich, M.
    In January 2005, a total of 18 rockets were launched from the Andøya Rocket Range in Northern Norway (69° N) into strong VHF radar echoes called "Polar Mesosphere Winter Echoes" (PMWE). The echoes were observed in the lower and middle mesosphere during large solar proton fluxes. In general, PMWE occur much more seldom compared to their summer counterparts PMSE (typical occurrence rates at 69° N are 1–3% vs. 80%, respectively). Our in-situ measurements by falling sphere, chaff, and instrumented payloads provide detailed information about the thermal and dynamical state of the atmosphere and therefore allow an unprecedented study of the background atmosphere during PMWE. There are a number of independent observations indicating that neutral air turbulence has caused PMWE. Ion density fluctuations show a turbulence spectrum within PMWE and no fluctuations outside. Temperature lapse rates close to the adiabatic gradient are observed in the vicinity of PMWE indicating persistent turbulent mixing. The spectral broadening of radar echoes is consistent with turbulent velocity fluctuations. Turbulence also explains the mean occurrence height of PMWE (~68–75 km): viscosity increases rapidly with altitude and destroys any small scale fluctuations in the upper mesosphere, whereas electron densities are usually too low in the lower mesosphere to cause significant backscatter. The seasonal variation of echoes in the lower mesosphere is in agreement with a turbulence climatology derived from earlier sounding rocket flights. We have performed model calculations to study the radar backscatter from plasma fluctuations caused by neutral air turbulence. We find that volume reflectivities observed during PMWE are in quantitative agreement with theory. Apart from turbulence the most crucial requirement for PMWE is a sufficiently large number of electrons, for example produced by solar proton events. We have studied the sensitivity of the radar echo strength on various parameters, most important electron number density and turbulence intensity. Our observational and theoretical considerations do not provide any evidence that charged aerosol particles are needed to explain PMWE, in contrast to the summer echoes which owe their existence to charged ice particles.
  • Item
    The noctilucent cloud (NLC) display during the ECOMA/MASS sounding rocket flights on 3 August 2007: Morphology on global to local scales
    (München : European Geopyhsical Union, 2009) Baumgarten, G.; Fiedler, J.; Fricke, K.H.; Gerding, M.; Hervig, M.; Hoffmann, P.; Müller, N.; Pautet, P.-D.; Rapp, M.; Robert, C.; Rusch, D.; von Savigny, C.; Singer, W.
    During the ECOMA/MASS rocket campaign large scale NLC/PMC was observed by satellite, lidar and camera from polar to mid latitudes. We examine the observations from different instruments to investigate the morphology of the cloud. Satellite observations show a planetary wave 2 structure. Lidar observations from Kühlungsborn (54° N), Esrange (68° N) and ALOMAR (69° N) show a highly dynamic NLC layer. Under favorable solar illumination the cloud is also observable by ground-based cameras. The cloud was detected by cameras from Trondheim (63° N), Juliusruh (55° N) and Kühlungsborn. We investigate planetary scale morphology and local scale gravity wave structures, important for the interpretation of the small scale rocket soundings. We compare in detail the lidar observations with the NLC structure observed by the camera in Trondheim. The ALOMAR RMR-lidar observed only a faint NLC during the ECOMA launch window, while the camera in Trondheim showed a strong NLC display in the direction of ALOMAR. Using the high resolution camera observations (t~30 s, Δx<5 km) and the wind information from the meteor radar at ALOMAR we investigate the formation and destruction of NLC structures. We observe that the NLC brightness is reduced by a factor of 20–40 within 100 s which can be caused by a temperature about 15 K above the frostpoint temperature. A horizontal temperature gradient of more than 3 K/km is estimated.
  • Item
    Rocket measurements of positive ions during polar mesosphere winter echo conditions
    (München : European Geopyhsical Union, 2006) Brattli, A.; Blix, T.A.; Lie-Svendsen, Ø.; Hoppe, U.-P.; Lübken, F.-J.; Rapp, M.; Singer, W.; Latteck, R.; Friedrich, M.
    On 18 January 2005, two small, instrumented rockets were launched from Andøya Rocket Range (69.3° N, 16° E) during conditions with Polar Mesosphere Winter Echoes (PMWE). Each of the rockets was equipped with a Positive Ion Probe (PIP) and a Faraday rotation/differential absorption experiment, and was launched as part of a salvo of meteorological rockets measuring temperature and wind using falling spheres and chaff. Layers of PMWE were detected between 55 and 77 km by the 53.5 MHz ALWIN radar. The rockets were launched during a solar proton event, and measured extremely high ion densities, of order 1010 m−3, in the region where PMWE were observed. The density measurements were analyzed with the wavelet transform technique. At large length scales, ~103 m, the power spectral density can be fitted with a k−3 wave number dependence, consistent with saturated gravity waves. Outside the PMWE layers the k−3 spectrum extends down to approximately 102 m where the fluctuations are quickly damped and disappear into the instrumental noise. Inside the PMWE layers the spectrum at smaller length scales is well fitted with a k−5/3 dependence over two decades of scales. The PMWE are therefore clearly indicative of turbulence, and the data are consistent with the turbulent dissipation of breaking gravity waves. We estimate a lower limit for the turbulent energy dissipation rate of about 10−2 W/kg in the upper (72 km) layer.
  • Item
    Signatures of mesospheric particles in ionospheric data
    (München : European Geopyhsical Union, 2009) Friedrich, M.; Torkar, K.M.; Singer, W.; Strelnikova, I.; Rapp, M.; Robertson, S.
    The state of the ionosphere during the 2007 ECOMA/MASS campaign is described by in-situ observations by three sounding rockets launched from the Andøya Rocket Range and by ground based observations. The ground based measurements included the incoherent scatter radar EISCAT near Tromsø (both on UHF and VHF), as well as an MF radar, a meteor radar and an imaging riometer all located in the close vicinity of the rocket range. The pronounced electron density bite-outs seen by two of the rockets could not be detected from the ground, but the associated PMSE (Polar Mesospheric Summer Echoes) provide indirect evidence of pronounced perturbations of mesospheric electron densities.