Search Results

Now showing 1 - 4 of 4
  • Item
    Coincident measurements of PMSE and NLC above ALOMAR (69° N, 16° E) by radar and lidar from 1999-2008
    (Göttingen : Copernicus, 2011) Kaifler, N.; Baumgarten, G.; Fiedler, J.; Latteck, R.; Lübken, F.-J.; Rapp, M.
    Polar Mesosphere Summer Echoes (PMSE) and Noctilucent Clouds (NLC) have been routinely measured at the ALOMAR research facility in Northern Norway (69° N, 16° E) by lidar and radar, respectively. 2900 h of lidar measurements by the ALOMAR Rayleigh/Mie/Raman lidar were combined with almost 18 000 h of radar measurements by the ALWIN VHF radar, all taken during the years 1999 to 2008, to study simultaneous and common-volume observations of both phenomena. PMSE and NLC are known from both theory and observations to be positively linked. We quantify the occurrences of PMSE and/or NLC and relations in altitude, especially with respect to the lower layer boundaries. The PMSE occurrence rate is with 75.3% considerably higher than the NLC occurrence rate of 19.5%. For overlapping PMSE and NLC observations, we confirm the coincidence of the lower boundaries and find a standard deviation of 1.26 km, hinting at very fast sublimation rates. However, 10.1% of all NLC measurements occur without accompanying PMSE. Comparison of occurrence rates with solar zenith angle reveals that NLC without PMSE mostly occur around midnight indicating that the ice particles were not detected by the radar due to the reduced electron density.
  • Item
    On microphysical processes of noctilucent clouds (NLC): Observations and modeling of mean and width of the particle size-distribution
    (Göttingen : Copernicus, 2010) Baumgarten, G.; Fiedler, J.; Rapp, M.
    Noctilucent clouds (NLC) in the polar summer mesopause region have been observed in Norway (69° N, 16° E) between 1998 and 2009 by 3-color lidar technique. Assuming a mono-modal Gaussian size distribution we deduce mean and width of the particle sizes throughout the clouds. We observe a quasi linear relationship between distribution width and mean of the particle size at the top of the clouds and a deviation from this behavior for particle sizes larger than 40 nm, most often in the lower part of the layer. The vertically integrated particle properties show that 65% of the data follows the linear relationship with a slope of 0.42±0.02 for mean particle sizes up to 40 nm. For the vertically resolved particle properties (Δz = Combining double low line 0.15 km) the slope is comparable and about 0.39±0.03. For particles larger than 40 nm the distribution width becomes nearly independent of particle size and even decreases in the lower part of the layer. We compare our observations to microphysical modeling of noctilucent clouds and find that the distribution width depends on turbulence, the time that turbulence can act (cloud age), and the sampling volume/time (atmospheric variability). The model results nicely reproduce the measurements and show that the observed slope can be explained by eddy diffusion profiles as observed from rocket measurements. © 2010 Author(s).
  • Item
    MAARSY - the new MST radar on Andøya/Norway
    (Göttingen : Copernicus, 2010) Latteck, R.; Singer, W.; Rapp, M.; Renkwitz, T.
    The Leibniz-Institute of Atmospheric Physics in Kühlungsborn, Germany (IAP) is installing a new powerful VHF radar on the North-Norwegian island Andøya (69.30° N, 16.04° E) in 2009/2010. The new Middle Atmosphere Alomar Radar System (MAARSY) replaces the existing ALWIN radar which has been operated continuously on Andøya for more than 10 years. The new system is a monostatic radar operated at 53.5MHz with an active phased array antenna consisting of 433 Yagi antennas. The 3- element Yagi antennas are arranged in an equilateral triangle grid forming a circular aperture of approximately 6300m2. Each individual antenna is connected to its own transceiver with independent phase control and a scalable output up to 2 kW. This arrangement allows very high flexibility of beam forming and beam steering with a symmetric radar beam of a minimum half power beam width of 3.6°, a maximum directive gain of 33.5 dB and a total transmitted peak power of approximately 800kW. The IF signals of each 7 transceivers connected to each 7 antennas arranged in a hexagon are combined to 61 receiving channels. Selected channels or combinations of IF signals are sent to a 16-channel data acquisition system with 25 m sampling resolution and 16-bit digitization specified which will be upgraded to 64 channels in the final stage. The high flexibility of the new system allows classical Doppler beam swinging as well as experiments with simultaneously formed multiple beams and the use of modern interferometric applications for improved studies of the Arctic atmosphere from the troposphere up to the lower thermosphere with high spatiotemporal resolution. © 2010 Author(s).
  • Item
    Multi beam observations of cosmic radio noise using a VHF radar with beam forming by a Butler matrix
    (Göttingen : Copernicus, 2011) Renkwitz, T.; Singer, W.; Latteck, R.; Rapp, M.
    The Leibniz-Institute of Atmospheric Physics (IAP) in Kühlungsborn started to install a new MST radar on the North-Norwegian island Andøya (69.30° N, 16.04° E) in 2009. The new Middle Atmosphere Alomar Radar System (MAARSY) replaces the previous ALWIN radar which has been successfully operated for more than 10 years. The MAARSY radar provides increased temporal and spatial resolution combined with a flexible sequential point-to-point steering of the radar beam. To increase the spatiotemporal resolution of the observations a 16-port Butler matrix has been built and implemented to the radar. In conjunction with 64 Yagi antennas of the former ALWIN antenna array the Butler matrix simultaneously provides 16 individual beams. The beam forming capability of the Butler matrix arrangement has been verified observing the galactic cosmic radio noise of the supernova remnant Cassiopeia A. Furthermore, this multi beam configuration has been used in passive experiments to estimate the cosmic noise absorption at 53.5 MHz during events of enhanced solar and geomagnetic activity as indicators for enhanced ionization at altitudes below 90 km. These observations are well correlated with simultaneous observations of corresponding beams of the co-located imaging riometer AIRIS (69.14° N, 16.02° E) at 38.2 MHz. In addition, enhanced cosmic noise absorption goes along with enhanced electron densities at altitudes below about 90 km as observed with the co-located Saura MF radar using differential absorption and differential phase measurements.