Search Results

Now showing 1 - 10 of 11
  • Item
    Simultaneous observations of a Mesospheric Inversion Layer and turbulence during the ECOMA-2010 rocket campaign
    (Göttingen : Copernicus, 2013) Szewczyk, A.; Strelnikov, B.; Rapp, M.; Strelnikova, I.; Baumgarten, G.; Kaifler, N.; Dunker, T.; Hoppe, U.-P.
    From 19 November to 19 December 2010 the fourth and final ECOMA rocket campaign was conducted at Andøya Rocket Range (69 N, 16 E) in northern Norway. We present and discuss measurement results obtained during the last rocket launch labelled ECOMA09 when simultaneous and true common volume in situ measurements of temperature and turbulence supported by ground-based lidar observations reveal two Mesospheric Inversion Layers (MIL) at heights between 71 and 73 km and between 86 and 89 km. Strong turbulence was measured in the region of the upper inversion layer, with the turbulent energy dissipation rates maximising at 2 W kg-1. This upper MIL was observed by the ALOMAR Weber Na lidar over the period of several hours. The spatial extension of this MIL as observed by the MLS instrument onboard AURA satellite was found to be more than two thousand kilometres. Our analysis suggests that both observed MILs could possibly have been produced by neutral air turbulence.
  • Item
    MAARSY-the new MST radar on Andøya: First results of spaced antenna and Doppler measurements of atmospheric winds in the troposphere and mesosphere using a partial array
    (Göttingen : Copernicus, 2012) Stober, G.; Latteck, R.; Rapp, M.; Singer, W.; Zecha, M.
    MST radars have been used to study the troposphere, stratosphere and mesosphere over decades. These radars have proven to be a valuable tool to investigate atmospheric dynamics. MAARSY, the new MST radar at the island of Andøya uses a phased array antenna and is able to perform spaced antenna and Doppler measurements at the same time with high temporal and spatial resolution. Here we present first wind observations using the initial expansion stage during summer 2010. The tropospheric spaced antenna and Doppler beam swinging experiments are compared to radiosonde measurements, which were launched at the nearby Andøya Rocket Range (ARR). The mesospheric wind observations are evaluated versus common volume meteor radar wind measurements. The beam steering capabilities of MAARSY are demonstrated by performing systematic scans of polar mesospheric summer echoes (PMSE) using 25 and 91 beam directions. These wind observations permit to evaluate the new radar against independent measurements from radiosondes and meteor radar measurements to demonstrate its capabilities to provide reliable wind data from the troposphere up to the mesosphere.
  • Item
    Coincident measurements of PMSE and NLC above ALOMAR (69° N, 16° E) by radar and lidar from 1999-2008
    (Göttingen : Copernicus, 2011) Kaifler, N.; Baumgarten, G.; Fiedler, J.; Latteck, R.; Lübken, F.-J.; Rapp, M.
    Polar Mesosphere Summer Echoes (PMSE) and Noctilucent Clouds (NLC) have been routinely measured at the ALOMAR research facility in Northern Norway (69° N, 16° E) by lidar and radar, respectively. 2900 h of lidar measurements by the ALOMAR Rayleigh/Mie/Raman lidar were combined with almost 18 000 h of radar measurements by the ALWIN VHF radar, all taken during the years 1999 to 2008, to study simultaneous and common-volume observations of both phenomena. PMSE and NLC are known from both theory and observations to be positively linked. We quantify the occurrences of PMSE and/or NLC and relations in altitude, especially with respect to the lower layer boundaries. The PMSE occurrence rate is with 75.3% considerably higher than the NLC occurrence rate of 19.5%. For overlapping PMSE and NLC observations, we confirm the coincidence of the lower boundaries and find a standard deviation of 1.26 km, hinting at very fast sublimation rates. However, 10.1% of all NLC measurements occur without accompanying PMSE. Comparison of occurrence rates with solar zenith angle reveals that NLC without PMSE mostly occur around midnight indicating that the ice particles were not detected by the radar due to the reduced electron density.
  • Item
    On microphysical processes of noctilucent clouds (NLC): Observations and modeling of mean and width of the particle size-distribution
    (Göttingen : Copernicus, 2010) Baumgarten, G.; Fiedler, J.; Rapp, M.
    Noctilucent clouds (NLC) in the polar summer mesopause region have been observed in Norway (69° N, 16° E) between 1998 and 2009 by 3-color lidar technique. Assuming a mono-modal Gaussian size distribution we deduce mean and width of the particle sizes throughout the clouds. We observe a quasi linear relationship between distribution width and mean of the particle size at the top of the clouds and a deviation from this behavior for particle sizes larger than 40 nm, most often in the lower part of the layer. The vertically integrated particle properties show that 65% of the data follows the linear relationship with a slope of 0.42±0.02 for mean particle sizes up to 40 nm. For the vertically resolved particle properties (Δz = Combining double low line 0.15 km) the slope is comparable and about 0.39±0.03. For particles larger than 40 nm the distribution width becomes nearly independent of particle size and even decreases in the lower part of the layer. We compare our observations to microphysical modeling of noctilucent clouds and find that the distribution width depends on turbulence, the time that turbulence can act (cloud age), and the sampling volume/time (atmospheric variability). The model results nicely reproduce the measurements and show that the observed slope can be explained by eddy diffusion profiles as observed from rocket measurements. © 2010 Author(s).
  • Item
    Validation of the radiation pattern of the Middle Atmosphere Alomar Radar System (MAARSY)
    (Göttingen : Copernicus, 2012) Renkwitz, T.; Singer, W.; Latteck, R.; Stober, G.; Rapp, M.
    In 2009/2010 the Leibniz-Institute of Atmospheric Physics (IAP) installed a new powerful VHF radar on the island Andøya in Northern Norway (69.30 N, 16.04 E). The Middle Atmosphere Alomar Radar System (MAARSY) allows studies with high spatial and temporal resolution in the troposphere/lower stratosphere and in the mesosphere/lower thermosphere of the Arctic atmosphere. The monostatic radar is operated at 53.5 MHz with an active phased array antenna consisting of 433 Yagi antennas. Each individual antenna is connected to its own transceiver with independent phase control and a scalable power output of up to 2 kW, which implies high flexibility of beam forming and beam steering. During the design phase of MAARSY several model studies have been carried out in order to estimate the radiation pattern for various combinations of beam forming and steering. However, parameters like mutual coupling, active impedance and ground parameters have an impact on the radiation pattern, but can hardly be measured. Hence, experiments need to be designed to verify the model results. For this purpose, the radar has occasionally been used in passive mode, monitoring the noise power received from both distinct cosmic noise sources like e.g. Cassiopeia A and Cygnus A, and the diffuse cosmic background noise. The analysis of the collected dataset enables us to verify beam forming and steering attempts. These results document the current status of the radar during its development and provide valuable information for further improvement.
  • Item
    MAARSY - the new MST radar on Andøya/Norway
    (Göttingen : Copernicus, 2010) Latteck, R.; Singer, W.; Rapp, M.; Renkwitz, T.
    The Leibniz-Institute of Atmospheric Physics in Kühlungsborn, Germany (IAP) is installing a new powerful VHF radar on the North-Norwegian island Andøya (69.30° N, 16.04° E) in 2009/2010. The new Middle Atmosphere Alomar Radar System (MAARSY) replaces the existing ALWIN radar which has been operated continuously on Andøya for more than 10 years. The new system is a monostatic radar operated at 53.5MHz with an active phased array antenna consisting of 433 Yagi antennas. The 3- element Yagi antennas are arranged in an equilateral triangle grid forming a circular aperture of approximately 6300m2. Each individual antenna is connected to its own transceiver with independent phase control and a scalable output up to 2 kW. This arrangement allows very high flexibility of beam forming and beam steering with a symmetric radar beam of a minimum half power beam width of 3.6°, a maximum directive gain of 33.5 dB and a total transmitted peak power of approximately 800kW. The IF signals of each 7 transceivers connected to each 7 antennas arranged in a hexagon are combined to 61 receiving channels. Selected channels or combinations of IF signals are sent to a 16-channel data acquisition system with 25 m sampling resolution and 16-bit digitization specified which will be upgraded to 64 channels in the final stage. The high flexibility of the new system allows classical Doppler beam swinging as well as experiments with simultaneously formed multiple beams and the use of modern interferometric applications for improved studies of the Arctic atmosphere from the troposphere up to the lower thermosphere with high spatiotemporal resolution. © 2010 Author(s).
  • Item
    Multi beam observations of cosmic radio noise using a VHF radar with beam forming by a Butler matrix
    (Göttingen : Copernicus, 2011) Renkwitz, T.; Singer, W.; Latteck, R.; Rapp, M.
    The Leibniz-Institute of Atmospheric Physics (IAP) in Kühlungsborn started to install a new MST radar on the North-Norwegian island Andøya (69.30° N, 16.04° E) in 2009. The new Middle Atmosphere Alomar Radar System (MAARSY) replaces the previous ALWIN radar which has been successfully operated for more than 10 years. The MAARSY radar provides increased temporal and spatial resolution combined with a flexible sequential point-to-point steering of the radar beam. To increase the spatiotemporal resolution of the observations a 16-port Butler matrix has been built and implemented to the radar. In conjunction with 64 Yagi antennas of the former ALWIN antenna array the Butler matrix simultaneously provides 16 individual beams. The beam forming capability of the Butler matrix arrangement has been verified observing the galactic cosmic radio noise of the supernova remnant Cassiopeia A. Furthermore, this multi beam configuration has been used in passive experiments to estimate the cosmic noise absorption at 53.5 MHz during events of enhanced solar and geomagnetic activity as indicators for enhanced ionization at altitudes below 90 km. These observations are well correlated with simultaneous observations of corresponding beams of the co-located imaging riometer AIRIS (69.14° N, 16.02° E) at 38.2 MHz. In addition, enhanced cosmic noise absorption goes along with enhanced electron densities at altitudes below about 90 km as observed with the co-located Saura MF radar using differential absorption and differential phase measurements.
  • Item
    Horizontally resolved structures of radar backscatter from polar mesospheric layers
    (Göttingen : Copernicus, 2012) Latteck, R.; Singer, W.; Rapp, M.; Renkwitz, T.; Stober, G.
    The Leibniz-Institute of Atmospheric Physics in Kühlungsborn, Germany (IAP) installed a new powerful VHF radar on the North-Norwegian island Andøya (69.30 N, 16.04 E) from 2009 to 2011. The new Middle Atmosphere Alomar Radar System (MAARSY) replaces the existing ALWIN radar which has been in continuous operation on Andøya for more than 10 yr. MAARSY is a monostatic radar operated at 53.5 MHz with an active phased array antenna consisting of 433 Yagi antennas each connected to its own transceiver with independent control of frequency, phase and power of the transmitted signal. This arrangement provides a very high flexibility of beam forming and beam steering. It allows classical beam swinging operation as well as experiments with simultaneous multiple beams and the use of modern interferometric applications for improved studies of the Arctic atmosphere from the troposphere up to the lower thermosphere with high spatial-temporal resolution. The installation of the antenna was completed in August 2009. An initial expansion stage of 196 transceiver modules was installed in spring 2010, upgraded to 343 transceiver modules in December 2010 and the installation of the radar was completed in spring 2011. Beside standard observations of tropospheric winds and Polar Mesosphere Summer Echoes, multi-beam experiments using up to 91 beams quasi-simultaneously in the mesosphere have been carried out using the different expansion stages of the system during campaigns in 2010 and 2011. These results provided a first insight into the horizontal variability of Polar Mesosphere Summer and Winter Echoes in an area of about 80 km by 80 km with time resolutions between 3 and 9 min.
  • Item
    New experiments to validate the radiation pattern of the Middle Atmosphere Alomar Radar System (MAARSY)
    (Göttingen : Copernicus, 2013) Renkwitz, T.; Stober, G.; Latteck, R.; Singer, W.; Rapp, M.
    The Middle Atmosphere Alomar Radar System (MAARSY) is a monostatic radar with an active phased array antenna designed for studies of phenomena in the mesosphere and lower thermosphere. Its design in particular the flexible beam forming and steering capability makes it to a powerful instrument to perform observations with high angular and temporal resolution. The knowledge of the actual radiation pattern is crucial to configure and analyze experiments carried out with the radar. The simulated radiation pattern is evaluated by the observation of cosmic radio emissions which are compared to a Global Sky temperature Maps model consisting of the most recent, thorough and accurate radio astronomy surveys. Additionally to these passive receive-only experiments active two-way experiments are presented, which corroborate the findings of the passive experiments.
  • Item
    The impact of planetary waves on the latitudinal displacement of sudden stratospheric warmings
    (Göttingen : Copernicus, 2013) Matthias, V.; Hoffmann, P.; Manson, A.; Meek, C.; Stober, G.; Brown, P.; Rapp, M.
    The Northern Hemispheric winter is disturbed by large scale variability mainly caused by Planetary Waves (PWs), which interact with the mean flow and thus result in Sudden Stratospheric Warmings (SSWs). The effects of a SSW on the middle atmosphere are an increase of stratospheric and a simultaneous decrease of mesospheric temperature as well as a wind reversal to westward wind from the mesosphere to the stratosphere. In most cases these disturbances are strongest at polar latitudes, get weaker toward the south and vanish at mid-latitudes around 50° to 60° N as for example during the winter 2005/06. However, other events like in 2009, 2010 and 2012 show a similar or even stronger westward wind at mid-than at polar latitudes either in the mesosphere or in the stratosphere during the SSW. This study uses local meteor and MF-radar measurements, global satellite observations from the Microwave Limb Sounder (MLS) and assimilated model data from MERRA (Modern-ERA Retrospective analysis for research and Applications). We compare differences in the latitudinal structure of the zonal wind, temperature and PW activity between a "normal" event, where the event in 2006 was chosen representatively, and the latitudinal displaced events in 2009, 2010 and 2012. A continuous westward wind band between the pole and 20° N is observed during the displaced events. Furthermore, distinctive temperature differences at mid-latitudes occur before the displaced warmings compared to 2006 as well as a southward extended stratospheric warming afterwards. These differences between the normal SSW in 2006 and the displaced events in 2009, 2010 and 2012 are linked to an increased PWactivity between 30° N and 50° N and the changed stationary wave flux in the stratosphere around the displaced events compared to 2006.