Search Results

Now showing 1 - 2 of 2
  • Item
    Stabilizing poor mass conservation in incompressible flow problems with large irrotational forcing and application to thermal convection
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2011) Galvin, Keith J.; Linke, Alexander; Rebholz, Leo G.; Wilson, Nicholas E.
    We consider the problem of poor mass conservation in mixed finite element algorithms for flow problems with large rotation-free forcing in the momentum equation. We provide analysis that suggests for such problems, obtaining accurate solutions necessitates either the use of pointwise divergence-free finite elements (such as Scott-Vogelius), or heavy grad-div stabilization of weakly divergence-free elements. The theory is demonstrated in numerical experiments for a benchmark natural convection problem, where large irrotational forcing occurs with high Rayleigh numbers.
  • Item
    New connections between finite element formulations of the Navier-Stokes equations
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2010) Bowers, Abigail L.; Cousins, Benjamin R.; Linke, Alexander; Rebholz, Leo G.
    We show the velocity solutions to the convective, skew-symmetric, and rotational Galerkin finite element formulations of the Navier-Stokes equations are identical if Scott-Vogelius elements are used, and thus all three formulations will the same pointwise divergence free solution velocity. A connection is then established between the formulations for grad-div stabilized Taylor-Hood elements: under mild restrictions, the formulations' velocity solutions converge to each other (and to the Scott-Vogelius solution) as the stabilization parameter tends to infinity. Thus the benefits of using Scott-Vogelius elements can be obtained with the less expensive Taylor-Hood elements, and moreover the benefits of all the formulations can be retained if the rotational formulation is used. Numerical examples are provided that confirm the theory