Search Results

Now showing 1 - 3 of 3
  • Item
    An analogue of grad-div stabilization in nonconforming methods for incompressible flows
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2017) Akbas, Mine; Linke, Alexander; Rebholz, Leo G.; Schroeder, Philipp W.
    Grad-div stabilization is a classical remedy in conforming mixed finite element methods for incompressible flow problems, for mitigating velocity errors that are sometimes called poor mass conservation. Such errors arise due to the relaxation of the divergence constraint in classical mixed methods, and are excited whenever the spacial discretization has to deal with comparably large and complicated pressures. In this contribution, an analogue of grad-div stabilization is presented for nonconforming flow discretizations of Discontinuous Galerkin or nonconforming finite element type. Here the key is the penalization of the jumps of the normal velocities over facets of the triangulation, which controls the measure-valued part of the distributional divergence of the discrete velocity solution. Furthermore, we characterize the limit for arbitrarily large penalization parameters, which shows that the proposed nonconforming Discontinuous Galerkin methods remain robust and accurate in this limit. Several numerical examples illustrate the theory and show their relevance for the simulation of practical, nontrivial flows.
  • Item
    On the parameter choice in grad-div stabilization for incompressible flow problems
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2012) Jenkins, Eleanor W.; John, Volker; Linke, Alexander; Rebholz, Leo G.
    Grad-div stabilization has been proved to be a very useful tool in discretizations of incompressible flow problems. Standard error analysis for inf-sup stable conforming pairs of finite element spaces predicts that the stabilization parameter should be optimally chosen to be O(1). This paper revisits this choice for the Stokes equations on the basis of minimizing the H1( ) error of the velocity and the L2( ) error of the pressure. It turns out, by applying a refined error analysis, that the optimal parameter choice is more subtle than known so far in the literature. It depends on the used norm, the solution, the family of finite element spaces, and the type of mesh. Depending on the situation, the optimal stabilization parameter might range from being very small to very large. The analytic results are supported by numerical examples.
  • Item
    Improving efficiency of coupled schemes for Navier-Stokes equations by a connection to grad-div stabilitzed projection methods
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2013) Linke, Alexander; Neilan, Michael; Rebholz, Leo G.; Wilson, Nicholas E.
    We prove that in finite element settings where the divergence-free subspace of the velocity space has optimal approximation properties, the solution of Chorin/Temam projection methods for Navier-Stokes equations equipped with grad-div stabilization with parameter , converge to the associated coupled method solution with rate gamma as gamma -> ?. We prove this first for backward Euler schemes, and then extend the results to BDF2 schemes, and finally to schemes with outflow boundary conditions. Several numerical experiments are given which verify the convergence rate, and show how using projection methods in this setting with large grad-div stabilization parameters can dramatically improve accuracy.