Search Results

Now showing 1 - 3 of 3
  • Item
    Corrector estimates in homogenization of a nonlinear transmission problem for diffusion equations in connected domains
    (Chichester, West Sussex : Wiley, 2020) Kovtunenko, Victor A.; Reichelt, Sina; Zubkova, Anna V.
    This paper is devoted to the homogenization of a nonlinear transmission problem stated in a two-phase domain. We consider a system of linear diffusion equations defined in a periodic domain consisting of two disjoint phases that are both connected sets separated by a thin interface. Depending on the field variables, at the interface, nonlinear conditions are imposed to describe interface reactions. In the variational setting of the problem, we prove the homogenization theorem and a bidomain averaged model. The periodic unfolding technique is used to obtain the residual error estimate with a first-order corrector. © 2019 The Authors. Mathematical Methods in the Applied Sciences published by John Wiley & Sons Ltd.
  • Item
    Traveling Fronts in a Reaction–Diffusion Equation with a Memory Term
    (New York, NY [u.a.] : Springer Science + Business Media B.V., 2022) Mielke, Alexander; Reichelt, Sina
    Based on a recent work on traveling waves in spatially nonlocal reaction–diffusion equations, we investigate the existence of traveling fronts in reaction–diffusion equations with a memory term. We will explain how such memory terms can arise from reduction of reaction–diffusion systems if the diffusion constants of the other species can be neglected. In particular, we show that two-scale homogenization of spatially periodic systems can induce spatially homogeneous systems with temporal memory. The existence of fronts is proved using comparison principles as well as a reformulation trick involving an auxiliary speed that allows us to transform memory terms into spatially nonlocal terms. Deriving explicit bounds and monotonicity properties of the wave speed of the arising traveling front, we are able to establish the existence of true traveling fronts for the original problem with memory. Our results are supplemented by numerical simulations.
  • Item
    Traveling fronts in a reaction-diffusion equation with a memory term
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2021) Mielke, Alexander; Reichelt, Sina
    Based on a recent work on traveling waves in spatially nonlocal reaction-diffusion equations, we investigate the existence of traveling fronts in reaction-diffusion equations with a memory term. We will explain how such memory terms can arise from reduction of reaction-diffusion systems if the diffusion constants of the other species can be neglected. In particular, we show that two-scale homogenization of spatially periodic systems can induce spatially homogeneous systems with temporal memory. The existence of fronts is proved using comparison principles as well as a reformulation trick involving an auxiliary speed that allows us to transform memory terms into spatially nonlocal terms. Deriving explicit bounds and monotonicity properties of the wave speed of the arising traveling front, we are able to establish the existence of true traveling fronts for the original problem with memory. Our results are supplemented by numerical simulations.