Search Results

Now showing 1 - 5 of 5
Loading...
Thumbnail Image
Item

A Mechanistic Perspective on Plastically Flexible Coordination Polymers

2019, Bhattacharya, Biswajit, Michalchuk, Adam A.L., Silbernagl, Dorothee, Rautenberg, Max, Schmid, Thomas, Feiler, Torvid, Reimann, Klaus, Ghalgaoui, Ahmed, Sturm, Heinz, Paulus, Beate, Emmerling, Franziska

Mechanical flexibility in single crystals of covalently bound materials is a fascinating and poorly understood phenomenon. We present here the first example of a plastically flexible one-dimensional (1D) coordination polymer. The compound [Zn(μ-Cl)2(3,5-dichloropyridine)2]n is flexible over two crystallographic faces. Remarkably, the single crystal remains intact when bent to 180°. A combination of microscopy, diffraction, and spectroscopic studies have been used to probe the structural response of the crystal lattice to mechanical bending. Deformation of the covalent polymer chains does not appear to be responsible for the observed macroscopic bending. Instead, our results suggest that mechanical bending occurs by displacement of the coordination polymer chains. Based on experimental and theoretical evidence, we propose a new model for mechanical flexibility in 1D coordination polymers. Moreover, our calculations propose a cause of the different mechanical properties of this compound and a structurally similar elastic material. © 2019 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

Loading...
Thumbnail Image
Item

Two-color two-dimensional terahertz spectroscopy: A new approach for exploring even-order nonlinearities in the nonperturbative regime

2021, Woerner, Michael, Ghalgaoui, Ahmed, Reimann, Klaus, Elsaesser, Thomas

Nonlinear two-dimensional terahertz (2D-THz) spectroscopy at frequencies of the emitted THz signal different from the driving frequencies allows for exploring the regime of (off-)resonant even-order nonlinearities in condensed matter. To demonstrate the potential of this method, we study two phenomena in the nonlinear THz response of bulk GaAs: (i) The nonlinear THz response to a pair of femtosecond near-infrared pulses unravels novel fourth- and sixth-order contributions involving interband shift currents, Raman-like excitations of transverse-optical phonon and intervalence-band coherences. (ii) Transient interband tunneling of electrons driven by ultrashort mid-infrared pulses can be effectively controlled by a low-frequency THz field with amplitudes below 50 kV/cm. The THz field controls the electron–hole separation modifying decoherence and the irreversibility of carrier generation.

Loading...
Thumbnail Image
Item

Spatial distribution of electric-field enhancement across the gap of terahertz bow-tie antennas

2020, Runge, Matthias, Engel, Dieter, Schneider, Michael, Reimann, Klaus, Woerner, Michael, Elsaesser, Thomas

The electric-field enhancement in terahertz (THz) antennas designed for nonlinear THz spectroscopy of soft matter is characterized by spatially resolved electrooptic sampling. To mimic the relevant interaction geometry, metallic, resonant bow-tie antennas are deposited on a thin zinc telluride crystal of 10 µm thickness. The THz electric field transmitted through the antenna gap is recorded by electrooptic sampling. By focusing the 800 nm, sub-20 fs sampling pulses, we achieve a spatial resolution of some 3 µm, which is 1/3 to 1/8 of the antenna-gap width. The THz field in the gap displays an enhancement by a factor of up to 4.5 with a pronounced spectral variation, depending sensitively on the antenna-arm length and the gap width. By scanning the 800 nm probe spot laterally through the antenna gap, the spatial variation of the enhancement is determined, reaching the highest values at the edges of the gap. The results are in agreement with simulations of the electric-field distributions by finite-element calculations. © 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Loading...
Thumbnail Image
Item

Ultrafast spatio-temporal dynamics of terahertz generation by ionizing two-color femtosecond pulses in gases

2010, Babushkin, Ihar, Kuehn, Wihelm, Köhler, Christian, Skupin, Stefan, Bergé, Luc, Reimann, Klaus, Woerner, Michael, Herrmann, Joachim, Elsaesser, Thomas

We present a combined theoretical and experimental study of spatio-temporal propagation effects in terahertz (THz) generation in gases using two-color ionizing laser pulses. The observed strong broadening of the THz spectra with increasing gas pressure reveals the prominent role of spatio-temporal reshaping and of a plasma-induced blue-shift of the pump pulses in the generation process. Results obtained from (3+1)-dimensional simulations are in good agreement with experimental findings and clarify the mechanisms responsible for THz emission.

Loading...
Thumbnail Image
Item

Field-Induced Tunneling Ionization and Terahertz-Driven Electron Dynamics in Liquid Water

2020, Ghalgaoui, Ahmed, Koll, Lisa-Marie, Schütte, Bernd, Fingerhut, Benjamin P., Reimann, Klaus, Woerner, Michael, Elsaesser, Thomas

Liquid water at ambient temperature displays ultrafast molecular motions and concomitant fluctuations of very strong electric fields originating from the dipolar H2O molecules. We show that such random intermolecular fields induce the tunnel ionization of water molecules, which becomes irreversible if an external terahertz (THz) pulse imposes an additional directed electric field on the liquid. Time-resolved nonlinear THz spectroscopy maps charge separation, transport, and localization of the released electrons on a few-picosecond time scale. The highly polarizable localized electrons modify the THz absorption spectrum and refractive index of water, a manifestation of a highly nonlinear response. Our results demonstrate how the interplay of local electric field fluctuations and external electric fields allows for steering charge dynamics and dielectric properties in aqueous systems. Copyright © 2020 American Chemical Society.