Search Results

Now showing 1 - 2 of 2
  • Item
    Transparent Power-Generating Windows Based on Solar-Thermal-Electric Conversion
    (Weinheim : Wiley-VCH, 2021) Zhang, Qihao; Huang, Aibin; Ai, Xin; Liao, Jincheng; Song, Qingfeng; Reith, Heiko; Cao, Xun; Fang, Yueping; Schierning, Gabi; Nielsch, Kornelius; Bai, Shengqiang; Chen, Lidong
    Integrating transparent solar-harvesting systems into windows can provide renewable on-site energy supply without altering building aesthetics or imposing further design constraints. Transparent photovoltaics have shown great potential, but the increased transparency comes at the expense of reduced power-conversion efficiency. Here, a new technology that overcomes this limitation by combining solar-thermal-electric conversion with a material's wavelength-selective absorption is presented. A wavelength-selective film consisting of Cs0.33WO3 and resin facilitates high visible-light transmittance (up to 88%) and outstanding ultraviolet and infrared absorbance, thereby converting absorbed light into heat without sacrificing transparency. A prototype that couples the film with thermoelectric power generation produces an extraordinary output voltage of ≈4 V within an area of 0.01 m2 exposed to sunshine. Further optimization design and experimental verification demonstrate high conversion efficiency comparable to state-of-the-art transparent photovoltaics, enriching the library of on-site energy-saving and transparent power generation.
  • Item
    On-Chip Micro Temperature Controllers Based on Freestanding Thermoelectric Nano Films for Low-Power Electronics
    (Berlin ; Heidelberg [u.a.] : Springer, 2024) Jin, Qun; Guo, Tianxiao; Pérez, Nicolás; Yang, Nianjun; Jiang, Xin; Nielsch, Kornelius; Reith, Heiko
    Dense and flat freestanding Bi2Te3-based thermoelectric nano films were successfully fabricated by sputtering technology using a newly developed nano graphene oxide membrane as a substrate. On-chip micro temperature controllers were integrated using conventional micro-electromechanical system technology, to achieve energy-efficient temperature control for low-power electronics. The tunable equivalent thermal resistance enables an ultrahigh temperature control capability of 100 K mW−1 and an ultra-fast cooling rate exceeding 2000 K s−1, as well as excellent reliability of up to 1 million cycles.