Search Results

Now showing 1 - 10 of 12
Loading...
Thumbnail Image
Item

Thermoelectric Characterization Platform for Electrochemically Deposited Materials

2020, Barati, Vida, Garcia Fernandez, Javier, Geishendorf, Kevin, Schnatmann, Lauritz Ule, Lammel, Michaela, Kunzmann, Alexander, Pérez, Nicolás, Li, Guodong, Schierning, Gabi, Nielsch, Kornelius, Reith, Heiko

Successful optimization of the thermoelectric (TE) performance of materials, described by the figure of merit zT, is a key enabler for its application in energy harvesting or Peltier cooling devices. While the zT value of bulk materials is accessible by a variety of commercial measurement setups, precise determination of the zT value for thin and thick films remains a great challenge. This is particularly relevant for films synthesized by electrochemical deposition, where the TE material is deposited onto an electrically conductive seed layer causing an in-plane short circuit. Therefore, a platform for full in-plane zT characterization of electrochemically deposited TE materials is developed, eliminating the impact of the electrically conducting seed layer. The characterization is done using a suspended TE material within a transport device which was prepared by photolithography in combination with chemical etching steps. An analytical model to determine the thermal conductivity is developed and the results verified using finite element simulations. Taken together, the full in-plane zT characterization provides an inevitable milestone for material optimization under realistic conditions in TE devices. © 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Loading...
Thumbnail Image
Item

Exchange Bias Effect of Ni@(NiO,Ni(OH)2) Core/Shell Nanowires Synthesized by Electrochemical Deposition in Nanoporous Alumina Membranes

2023, García, Javier, Gutiérrez, Ruth, González, Ana S., Jiménez-Ramirez, Ana I., Álvarez, Yolanda, Vega, Víctor, Reith, Heiko, Leistner, Karin, Luna, Carlos, Nielsch, Kornelius, Prida, Víctor M.

Tuning and controlling the magnetic properties of nanomaterials is crucial to implement new and reliable technologies based on magnetic hyperthermia, spintronics, or sensors, among others. Despite variations in the alloy composition as well as the realization of several post material fabrication treatments, magnetic heterostructures as ferromagnetic/antiferromagnetic coupled layers have been widely used to modify or generate unidirectional magnetic anisotropies. In this work, a pure electrochemical approach has been used to fabricate core (FM)/shell (AFM) Ni@(NiO,Ni(OH)2) nanowire arrays, avoiding thermal oxidation procedures incompatible with integrative semiconductor technologies. Besides the morphology and compositional characterization of these core/shell nanowires, their peculiar magnetic properties have been studied by temperature dependent (isothermal) hysteresis loops, thermomagnetic curves and FORC analysis, revealing the existence of two different effects derived from Ni nanowires’ surface oxidation over the magnetic performance of the array. First of all, a magnetic hardening of the nanowires along the parallel direction of the applied magnetic field with respect their long axis (easy magnetization axis) has been found. The increase in coercivity, as an effect of surface oxidation, has been observed to be around 17% (43%) at 300 K (50 K). On the other hand, an increasing exchange bias effect on decreasing temperature has been encountered when field cooling (3T) the oxidized Ni@(NiO,Ni(OH)2) nanowires below 100 K along their parallel lengths.

Loading...
Thumbnail Image
Item

Signatures of a Charge Density Wave Phase and the Chiral Anomaly in the Fermionic Material Cobalt Monosilicide CoSi

2020, Schnatmann, Lauritz, Geishendorf, Kevin, Lammel, Michaela, Damm, Christine, Novikov, Sergey, Thomas, Andy, Burkov, Alexander, Reith, Heiko, Nielsch, Kornelius, Schierning, Gabi

Materials with topological electronic states have emerged as one of the most exciting discoveries of condensed quantum matter, hosting quasiparticles with extremely low effective mass and high mobility. Weyl materials contain such topological states in the bulk and additionally have a non-trivial chiral charge. However, despite known quantum effects caused by these chiral states, the interplay between chiral states, and a charge density wave phase, an ordering of the electrons to a correlated phase is not experimentally explored. Indications for the formation of a charge density wave phase in the Weyl material cobalt monosilicide CoSi are observed. Furthermore, the typical signatures of the charge density wave phase together with typical signatures of Weyl fermions in magnetic field dependent electrical transport characterization are investigated. The charge density wave and the chiral contribution to the electrical magneto-transport are separated as well as a suppression of the charge density wave phase is observed in magnetic fields. © 2019 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Loading...
Thumbnail Image
Item

Polyethenetetrathiolate or polytetrathiooxalate? Improved synthesis, a comparative analysis of a prominent thermoelectric polymer and implications to the charge transport mechanism

2018, Tkachov, Roman, Stepien, Lukas, Grafe, Robert, Guskova, Olga, Kiriy, Anton, Simon, Frank, Reith, Heiko, Nielsch, Kornelius, Schierning, Gabi, Kasinathan, Deepa, Leyens, Christoph

1,1,2,2-Ethenetetrathiolate (ett4-) coordination polymers, such as poly[Kx(Ni-ett)], have been known for decades for their excellent thermoelectric properties. However in reality, ett4- is neither a "true" comonomer which participates in the polymerization, nor represents a "true" repeat unit of the target polymer. Indeed, poly[K2(Ni-ett)], which is formally the product of Ni-induced polymerization of ett4-, has a poor conductivity and needs to be oxidized to show attractive thermoelectric characteristics. The polymerization and oxidation processes are poorly controllable which causes irreproducibility of the polymer properties. To improve the synthesis reproducibility, we studied polymerization of potassium tetrathiooxalate (K2tto), the convenient synthesis of which was developed in our recent work. Because K2tto is the "true monomer", and not its precursor, a high quality product is reproducibly formed simply by mixing K2tto with NiCl2 at room temperature. The procedure does not require additional components (bases), or special conditions (prolonged heating), which are usually needed for the preparation of this polymer from the monomer precursor 1,3,4,6-tetrathiapentalene-2,5-dione (TPD). Furthermore, as tto2- is formally the product of two-electron oxidation of ett4-, the poorly controllable oxidation process is avoided and poly[Ni-tto] almost free from K is directly formed upon the complexation of Ni2+ and tto2-. Thus-obtained poly[Ni-tto] possesses conductivity in the range of 27-47 S cm-1 and a Seebeck coefficient in the range of -38 to -55 μV K-1, which are superior thermoelectric properties compared to poly[Kx(Ni-ett)] samples obtained by the previously reported methods. Redox and structural properties of poly[Ni-tto] were compared with those of poly[Kx(Ni-ett)] obtained by the reported methods. Furthermore, DFT calculations were performed to shed more light on generally promising properties of this class of materials. Particularly, possible packing models have been predicted for polymers, and the molecular dynamics simulations have been used to simulate the molecular arrangements under ambient conditions.

Loading...
Thumbnail Image
Item

Transparent Power-Generating Windows Based on Solar-Thermal-Electric Conversion

2021, Zhang, Qihao, Huang, Aibin, Ai, Xin, Liao, Jincheng, Song, Qingfeng, Reith, Heiko, Cao, Xun, Fang, Yueping, Schierning, Gabi, Nielsch, Kornelius, Bai, Shengqiang, Chen, Lidong

Integrating transparent solar-harvesting systems into windows can provide renewable on-site energy supply without altering building aesthetics or imposing further design constraints. Transparent photovoltaics have shown great potential, but the increased transparency comes at the expense of reduced power-conversion efficiency. Here, a new technology that overcomes this limitation by combining solar-thermal-electric conversion with a material's wavelength-selective absorption is presented. A wavelength-selective film consisting of Cs0.33WO3 and resin facilitates high visible-light transmittance (up to 88%) and outstanding ultraviolet and infrared absorbance, thereby converting absorbed light into heat without sacrificing transparency. A prototype that couples the film with thermoelectric power generation produces an extraordinary output voltage of ≈4 V within an area of 0.01 m2 exposed to sunshine. Further optimization design and experimental verification demonstrate high conversion efficiency comparable to state-of-the-art transparent photovoltaics, enriching the library of on-site energy-saving and transparent power generation.

Loading...
Thumbnail Image
Item

Temperature gradient-induced magnetization reversal of single ferromagnetic nanowires

2017-11-17, Michel, Ann-Kathrin, Niemann, Anna Corinna, Boehnert, Tim, Martens, Stephan, Moreno, Josep M. Montero, Goerlitz, Detlef, Zierold, Robert, Reith, Heiko, Vega, Victor, Prida, Victor M., Thomas, Andy, Gooth, Johannes, Nielsch, Kornelius

In this study, we investigate the temperature- and temperature gradient-dependent magnetization reversal process of individual, single-domain Co39Ni61 and Fe15Ni85 ferromagnetic nanowires via the magneto-optical Kerr effect and magnetoresistance measurements. While the coercive fields (HC) and therefore the magnetic switching fields (HSW) generally decrease under isothermal conditions at elevated base temperatures (Tbase), temperature gradients (ΔT) along the nanowires lead to an increased switching field of up to 15% for ΔT  = 300 K in Co39Ni61 nanowires. This enhancement is attributed to a stress-induced, magneto-elastic anisotropy term due to an applied temperature gradient along the nanowire that counteracts the thermally assisted magnetization reversal process. Our results demonstrate that a careful distinction between locally elevated temperatures and temperature gradients has to be made in future heat-assisted magnetic recording devices.

Loading...
Thumbnail Image
Item

Doping High-Mobility Donor : Acceptor Copolymer Semiconductors with an Organic Salt for High-Performance Thermoelectric Materials

2020, Guo, Jing, Li, Guodong, Reith, Heiko, Jiang, Lang, Wang, Ming, Li, Yuhao, Wang, Xinhao, Zeng, Zebing, Zhao, Huaizhou, Lu, Xinhui, Schierning, Gabi, Nielsch, Kornelius, Liao, Lei, Hu, Yuanyuan

Organic semiconductors (OSCs) are attractive for fabrication of thermoelectric devices with low cost, large area, low toxicity, and high flexibility. In order to achieve high-performance organic thermoelectric devices (OTEs), it is essential to develop OSCs with high conductivity (σ), large Seebeck coefficient (S), and low thermal conductivity (κ). It is equally important to explore efficient dopants matching the need of thermoelectric devices. The thermoelectric performance of a high-mobility donor–acceptor (D–A) polymer semiconductor, which is doped by an organic salt, is studied. Both a high p-type electrical conductivity approaching 4 S cm−1 and an excellent power factor (PF) of 7 µW K−2 m−1 are obtained, which are among the highest reported values for polymer semiconductors. Temperature-dependent conductivity, Seebeck coefficient and power factor of the doped materials are systematically investigated. Detailed analysis on the results of thermoelectric measurements has revealed a hopping transport in the materials, which verifies the empirical relationship: S ∝ σ−1/4 and PF ∝ σ1/2. The results demonstrate that D–A copolymer semiconductors with proper combination of dopants have great potential for fabricating high-performance thermoelectric devices. © 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Loading...
Thumbnail Image
Item

Influence of Nanoparticle Processing on the Thermoelectric Properties of (BixSb1−X)2Te3 Ternary Alloys

2021, Salloum, Sarah, Bendt, Georg, Heidelmann, Markus, Loza, Kateryna, Bayesteh, Samaneh, Izadi, M. Sepideh, Patrick, Kawulok, He, Ran, Schlörb, Heike, Perez, Nicolas, Reith, Heiko, Nielsch, Kornelius, Schierning, Gabi, Schulz, Stephan

The synthesis of phase‐pure ternary solutions of tetradymite‐type materials (BixSb1−x)2Te3 (x=0.25; 0.50; 0.75) in an ionic liquid approach has been carried out. The nanoparticles are characterized by means of energy‐dispersive X‐ray spectroscopy (EDX), powder X‐ray diffraction (PXRD), scanning electron microscopy (SEM), and transmission electron microscopy. In addition, the role of different processing approaches on the thermoelectric properties ‐ Seebeck coefficient as well as electrical and thermal conductivity ‐ is demonstrated.

Loading...
Thumbnail Image
Item

On-Chip Micro Temperature Controllers Based on Freestanding Thermoelectric Nano Films for Low-Power Electronics

2024, Jin, Qun, Guo, Tianxiao, Pérez, Nicolás, Yang, Nianjun, Jiang, Xin, Nielsch, Kornelius, Reith, Heiko

Dense and flat freestanding Bi2Te3-based thermoelectric nano films were successfully fabricated by sputtering technology using a newly developed nano graphene oxide membrane as a substrate. On-chip micro temperature controllers were integrated using conventional micro-electromechanical system technology, to achieve energy-efficient temperature control for low-power electronics. The tunable equivalent thermal resistance enables an ultrahigh temperature control capability of 100 K mW−1 and an ultra-fast cooling rate exceeding 2000 K s−1, as well as excellent reliability of up to 1 million cycles.

Loading...
Thumbnail Image
Item

Towards tellurium-free thermoelectric modules for power generation from low-grade heat

2021, Ying, Pingjun, He, Ran, Mao, Jun, Zhang, Qihao, Reith, Heiko, Sui, Jiehe, Ren, Zhifeng, Nielsch, Kornelius, Schierning, Gabi

Thermoelectric technology converts heat into electricity directly and is a promising source of clean electricity. Commercial thermoelectric modules have relied on Bi2Te3-based compounds because of their unparalleled thermoelectric properties at temperatures associated with low-grade heat (<550 K). However, the scarcity of elemental Te greatly limits the applicability of such modules. Here we report the performance of thermoelectric modules assembled from Bi2Te3-substitute compounds, including p-type MgAgSb and n-type Mg3(Sb,Bi)2, by using a simple, versatile, and thus scalable processing routine. For a temperature difference of ~250 K, whereas a single-stage module displayed a conversion efficiency of ~6.5%, a module using segmented n-type legs displayed a record efficiency of ~7.0% that is comparable to the state-of-the-art Bi2Te3-based thermoelectric modules. Our work demonstrates the feasibility and scalability of high-performance thermoelectric modules based on sustainable elements for recovering low-grade heat.