Search Results

Now showing 1 - 2 of 2
  • Item
    Delayed relaxation of highly excited naphthalene cations
    (Bristol : IOP Publ., 2020) Reitsma, G.; Hummert, J.; Dura, J.; Loriot, V.; Vrakking, M.J.J.; Lépine, F.; Kornilov, O.
    The efficiency of energy transfer in ultrafast electronic relaxation of molecules depends strongly on the complex interplay between electronic and nuclear motion. In this study we use wavelength-selected XUV pulses to induce relaxation dynamics of highly excited cationic states of naphthalene. Surprisingly, the observed relaxation lifetimes increase with the cationic excitation energy. We propose that this is a manifestation of a quantum mechanical population trapping that leads to delayed relaxation of molecules in the regions with a high density of excited states. © 2019 Published under licence by IOP Publishing Ltd.
  • Item
    Few-femtosecond passage of conical intersections in the benzene cation
    ([London] : Nature Publishing Group UK, 2017) Galbraith, M.C.E.; Scheit, S.; Golubev, N.V.; Reitsma, G.; Zhavoronkov, N.; Despré, V.; Lépine, F.; Kuleff, A.I.; Vrakking, M.J.J.; Kornilov, O.; Köppel, H.; Mikosch, J.
    Observing the crucial first few femtoseconds of photochemical reactions requires tools typically not available in the femtochemistry toolkit. Such dynamics are now within reach with the instruments provided by attosecond science. Here, we apply experimental and theoretical methods to assess the ultrafast nonadiabatic vibronic processes in a prototypical complex system - the excited benzene cation. We use few-femtosecond duration extreme ultraviolet and visible/near-infrared laser pulses to prepare and probe excited cationic states and observe two relaxation timescales of 11 ± 3 fs and 110 ± 20 fs. These are interpreted in terms of population transfer via two sequential conical intersections. The experimental results are quantitatively compared with state-of-the-art multi-configuration time-dependent Hartree calculations showing convincing agreement in the timescales. By characterising one of the fastest internal conversion processes studied to date, we enter an extreme regime of ultrafast molecular dynamics, paving the way to tracking and controlling purely electronic dynamics in complex molecules.