Search Results

Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Item

Combining multiple statistical methods to evaluate the performance of process-based vegetation models across three forest stands

2017, Horemans, Joanna A., Henrot, Alexandra, Delire, Christine, Kollas, Chris, Lasch-Born, Petra, Reyer, Christopher, Suckow, Felicitas, François, Louis, Ceulemans, Reinhart

Process-based vegetation models are crucial tools to better understand biosphere-atmosphere exchanges and eco-physiological responses to climate change. In this contribution the performance of two global dynamic vegetation models, i.e. CARAIB and ISBACC, and one stand-scale forest model, i.e. 4C, was compared to long-term observed net ecosystem carbon exchange (NEE) time series from eddy covariance monitoring stations at three old-grown European beech (Fagus sylvatica L.) forest stands. Residual analysis, wavelet analysis and singular spectrum analysis were used beside conventional scalar statistical measures to assess model performance with the aim of defining future targets for model improvement. We found that the most important errors for all three models occurred at the edges of the observed NEE distribution and the model errors were correlated with environmental variables on a daily scale. These observations point to possible projection issues under more extreme future climate conditions. Recurrent patterns in the residuals over the course of the year were linked to the approach to simulate phenology and physiological evolution during leaf development and senescence. Substantial model errors occurred on the multi-annual time scale, possibly caused by the lack of inclusion of management actions and disturbances. Other crucial processes defined were the forest structure and the vertical light partitioning through the canopy. Further, model errors were shown not to be transmitted from one time scale to another. We proved that models should be evaluated across multiple sites, preferably using multiple evaluation methods, to identify processes that request reconsideration.

Loading...
Thumbnail Image
Item

State-of-the-art global models underestimate impacts from climate extremes

2019, Schewe, Jacob, Gosling, Simon N., Reyer, Christopher, Zhao, Fang, Ciais, Philippe, Elliott, Joshua, Francois, Louis, Huber, Veronika, Lotze, Heike K., Seneviratne, Sonia I., van Vliet, Michelle T. H., Vautard, Robert, Wada, Yoshihide, Breuer, Lutz, Büchner, Matthias, Carozza, David A., Chang, Jinfeng, Coll, Marta, Deryng, Delphine, de Wit, Allard, Eddy, Tyler D., Folberth, Christian, Frieler, Katja, Friend, Andrew D., Gerten, Dieter, Gudmundsson, Lukas, Hanasaki, Naota, Ito, Akihiko, Khabarov, Nikolay, Kim, Hyungjun, Lawrence, Peter, Morfopoulos, Catherine, Müller, Christoph, Müller Schmied, Hannes, Orth, René, Ostberg, Sebastian, Pokhrel, Yadu, Pugh, Thomas A. M., Sakurai, Gen, Satoh, Yusuke, Schmid, Erwin, Stacke, Tobias, Steenbeek, Jeroen, Steinkamp, Jörg, Tang, Qiuhong, Tian, Hanqin, Tittensor, Derek P., Volkholz, Jan, Wang, Xuhui, Warszawski, Lila

Global impact models represent process-level understanding of how natural and human systems may be affected by climate change. Their projections are used in integrated assessments of climate change. Here we test, for the first time, systematically across many important systems, how well such impact models capture the impacts of extreme climate conditions. Using the 2003 European heat wave and drought as a historical analogue for comparable events in the future, we find that a majority of models underestimate the extremeness of impacts in important sectors such as agriculture, terrestrial ecosystems, and heat-related human mortality, while impacts on water resources and hydropower are overestimated in some river basins; and the spread across models is often large. This has important implications for economic assessments of climate change impacts that rely on these models. It also means that societal risks from future extreme events may be greater than previously thought.

Loading...
Thumbnail Image
Item

Benchmarking carbon fluxes of the ISIMIP2a biome models

2017, Chang, Jinfeng, Ciais, Philippe, Wang, Xuhui, Piao, Shilong, Asrar, Ghassem, Betts, Richard, Chevallier, Frédéric, Dury, Marie, François, Louis, Frieler, Katja, Ros, Anselmo García Cantú, Henrot, Alexandra-Jane, Hickler, Thomas, Ito, Akihiko, Morfopoulos, Catherine, Munhoven, Guy, Nishina, Kazuya, Ostberg, Sebastian, Pan, Shufen, Peng, Shushi, Rafique, Rashid, Reyer, Christopher, Rödenbeck, Christian, Schaphoff, Sibyll, Steinkamp, Jörg, Tian, Hanqin, Viovy, Nicolas, Yang, Jia, Zeng, Ning, Zhao, Fang

The purpose of this study is to evaluate the eight ISIMIP2a biome models against independent estimates of long-term net carbon fluxes (i.e. Net Biome Productivity, NBP) over terrestrial ecosystems for the recent four decades (1971–2010). We evaluate modeled global NBP against 1) the updated global residual land sink (RLS) plus land use emissions (E LUC) from the Global Carbon Project (GCP), presented as R + L in this study by Le Quéré et al (2015), and 2) the land CO2 fluxes from two atmospheric inversion systems: Jena CarboScope s81_v3.8 and CAMS v15r2, referred to as F Jena and F CAMS respectively. The model ensemble-mean NBP (that includes seven models with land-use change) is higher than but within the uncertainty of R + L, while the simulated positive NBP trend over the last 30 yr is lower than that from R + L and from the two inversion systems. ISIMIP2a biome models well capture the interannual variation of global net terrestrial ecosystem carbon fluxes. Tropical NBP represents 31 ± 17% of global total NBP during the past decades, and the year-to-year variation of tropical NBP contributes most of the interannual variation of global NBP. According to the models, increasing Net Primary Productivity (NPP) was the main cause for the generally increasing NBP. Significant global NBP anomalies from the long-term mean between the two phases of El Niño Southern Oscillation (ENSO) events are simulated by all models (p < 0.05), which is consistent with the R + L estimate (p = 0.06), also mainly attributed to NPP anomalies, rather than to changes in heterotrophic respiration (Rh). The global NPP and NBP anomalies during ENSO events are dominated by their anomalies in tropical regions impacted by tropical climate variability. Multiple regressions between R + L, F Jena and F CAMS interannual variations and tropical climate variations reveal a significant negative response of global net terrestrial ecosystem carbon fluxes to tropical mean annual temperature variation, and a non-significant response to tropical annual precipitation variation. According to the models, tropical precipitation is a more important driver, suggesting that some models do not capture the roles of precipitation and temperature changes adequately.