Search Results

Now showing 1 - 3 of 3
  • Item
    Hydrothermal carbonization (HTC): Near infrared spectroscopy and partial least-squares regression for determination of selective components in HTC solid and liquid products derived from maize silage
    (Amsterdam : Elsevier, 2014) Reza, M. Toufiq; Becker, Wolfgang; Sachsenheimer, Kerstin; Mumme, Jan
    Near-infrared (NIR) spectroscopy was evaluated as a rapid method of predicting fiber components (hemicellulose, cellulose, lignin, and ash) and selective compounds of hydrochar and corresponding process liquor produced by hydrothermal carbonization (HTC) of maize silage. Several HTC reaction times and temperatures were applied and NIR spectra of both HTC solids and liquids were obtained and correlated with concentration determined from van-Soest fiber analysis, IC, and UHPLC. Partial least-squares regression was applied to calculate models for the prediction of selective substances. The model developed with the spectra had the best performance in 3–7 factors with a correlation coefficient, which varied between 0.9275–0.9880 and 0.9364–0.9957 for compounds in solid and liquid, respectively. Calculated root mean square errors of prediction (RMSEP) were 0.42–5.06 mg/kg. The preliminary results indicate that NIR, a widely applied technique, might be applied to determine chemical compounds in HTC solid and liquid.
  • Item
    Evaluation of integrated anaerobic digestion and hydrothermal carbonization for bioenergy production
    (Cambridge : JoVE, 2014) Reza, M. Toufiq; Werner, Maja; Pohl, Marcel; Mumme, Jan
    Lignocellulosic biomass is one of the most abundant yet underutilized renewable energy resources. Both anaerobic digestion (AD) and hydrothermal carbonization (HTC) are promising technologies for bioenergy production from biomass in terms of biogas and HTC biochar, respectively. In this study, the combination of AD and HTC is proposed to increase overall bioenergy production. Wheat straw was anaerobically digested in a novel upflow anaerobic solid state reactor (UASS) in both mesophilic (37 °C) and thermophilic (55 °C) conditions. Wet digested from thermophilic AD was hydrothermally carbonized at 230 °C for 6 hr for HTC biochar production. At thermophilic temperature, the UASS system yields an average of 165 LCH4/kgVS (VS: volatile solids) and 121 L CH4/kgVS at mesophilic AD over the continuous operation of 200 days. Meanwhile, 43.4 g of HTC biochar with 29.6 MJ/kgdry_biochar was obtained from HTC of 1 kg digestate (dry basis) from mesophilic AD. The combination of AD and HTC, in this particular set of experiment yield 13.2 MJ of energy per 1 kg of dry wheat straw, which is at least 20% higher than HTC alone and 60.2% higher than AD only.
  • Item
    Ash reduction of corn stover by mild hydrothermal preprocessing
    (Heidelberg : Springer, 2014) Reza, M. Toufiq; Emerson, Rachel; Uddin, M. Helal; Gresham, Garold; Coronella, Charles J.
    Lignocellulosic biomass such as corn stover can contain high ash content, which may act as an inhibitor in downstream conversion processes. Most of the structural ash in biomass is located in the cross-linked structure of lignin, which is mildly reactive in basic solutions. Four organic acids (formic, oxalic, tartaric, and citric) were evaluated for effectiveness in ash reduction, with limited success. Because of sodium citrate’s chelating and basic characteristics, it is effective in ash removal. More than 75 % of structural and 85 % of whole ash was removed from the biomass by treatment with 0.1 g of sodium citrate per gram of biomass at 130 °C and 2.7 bar. FTIR, fiber analysis, and chemical analyses show that cellulose and hemicellulose were unaffected by the treatment. ICP–AES showed that all inorganics measured were reduced within the biomass feedstock, except sodium due to the addition of Na through the treatment. Sodium citrate addition to the preconversion process of corn stover is an effective way to reduced physiological ash content of the feedstock without negatively impacting carbohydrate and lignin content.