Search Results

Now showing 1 - 10 of 22
Loading...
Thumbnail Image
Item

Taking some heat off the NDCs? The limited potential of additional short-lived climate forcers’ mitigation

2019, Harmsen, Mathijs, Fricko, Oliver, Hilaire, Jérôme, van Vuuren, Detlef P., Drouet, Laurent, Durand-Lasserve, Olivier, Fujimori, Shinichiro, Keramidas, Kimon, Klimont, Zbigniew, Luderer, Gunnar, Aleluia Reis, Lara, Riahi, Keywan, Sano, Fuminori, Smith, Steven J.

Several studies have shown that the greenhouse gas reduction resulting from the current nationally determined contributions (NDCs) will not be enough to meet the overall targets of the Paris Climate Agreement. It has been suggested that more ambition mitigations of short-lived climate forcer (SLCF) emissions could potentially be a way to reduce the risk of overshooting the 1.5 or 2 Â°C target in a cost-effective way. In this study, we employ eight state-of-the-art integrated assessment models (IAMs) to examine the global temperature effects of ambitious reductions of methane, black and organic carbon, and hydrofluorocarbon emissions. The SLCFs measures considered are found to add significantly to the effect of the NDCs on short-term global mean temperature (GMT) (in the year 2040: − 0.03 to − 0.15 Â°C) and on reducing the short-term rate-of-change (by − 2 to 15%), but only a small effect on reducing the maximum temperature change before 2100. This, because later in the century under assumed ambitious climate policy, SLCF mitigation is maximized, either directly or indirectly due to changes in the energy system. All three SLCF groups can contribute to achieving GMT changes. © 2019, The Author(s).

Loading...
Thumbnail Image
Item

The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6

2016, O'Neill, Brian C., Tebaldi, Claudia, van Vuuren, Detlef P., Eyring, Veronika, Friedlingstein, Pierre, Hurtt, George, Knutti, Reto, Kriegler, Elmar, Lamarque, Jean-Francois, Lowe, Jason, Meehl, Gerald A., Moss, Richard, Riahi, Keywan, Sanderson, Benjamin M.

Projections of future climate change play a fundamental role in improving understanding of the climate system as well as characterizing societal risks and response options. The Scenario Model Intercomparison Project (ScenarioMIP) is the primary activity within Phase 6 of the Coupled Model Intercomparison Project (CMIP6) that will provide multi-model climate projections based on alternative scenarios of future emissions and land use changes produced with integrated assessment models. In this paper, we describe ScenarioMIP's objectives, experimental design, and its relation to other activities within CMIP6. The ScenarioMIP design is one component of a larger scenario process that aims to facilitate a wide range of integrated studies across the climate science, integrated assessment modeling, and impacts, adaptation, and vulnerability communities, and will form an important part of the evidence base in the forthcoming Intergovernmental Panel on Climate Change (IPCC) assessments. At the same time, it will provide the basis for investigating a number of targeted science and policy questions that are especially relevant to scenario-based analysis, including the role of specific forcings such as land use and aerosols, the effect of a peak and decline in forcing, the consequences of scenarios that limit warming to below 2°C, the relative contributions to uncertainty from scenarios, climate models, and internal variability, and long-term climate system outcomes beyond the 21st century. To serve this wide range of scientific communities and address these questions, a design has been identified consisting of eight alternative 21st century scenarios plus one large initial condition ensemble and a set of long-term extensions, divided into two tiers defined by relative priority. Some of these scenarios will also provide a basis for variants planned to be run in other CMIP6-Endorsed MIPs to investigate questions related to specific forcings. Harmonized, spatially explicit emissions and land use scenarios generated with integrated assessment models will be provided to participating climate modeling groups by late 2016, with the climate model simulations run within the 2017–2018 time frame, and output from the climate model projections made available and analyses performed over the 2018–2020 period.

Loading...
Thumbnail Image
Item

A multi-model assessment of the co-benefits of climate mitigation for global air quality

2016, Rao, Shilpa, Klimont, Zbigniew, Leitao, Joana, Riahi, Keywan, van Dingenen, Rita, Reis, Lara Aleluia, Calvin, Katherine, Dentener, Frank, Drouet, Laurent, Fujimori, Shinichiro, Harmsen, Mathijs, Luderer, Gunnar, Heyes, Chris, Strefler, Jessica, Tavoni, Massimo, van Vuuren, Detlef P.

We present a model comparison study that combines multiple integrated assessment models with a reduced-form global air quality model to assess the potential co-benefits of global climate mitigation policies in relation to the World Health Organization (WHO) goals on air quality and health. We include in our assessment, a range of alternative assumptions on the implementation of current and planned pollution control policies. The resulting air pollution emission ranges significantly extend those in the Representative Concentration Pathways. Climate mitigation policies complement current efforts on air pollution control through technology and fuel transformations in the energy system. A combination of stringent policies on air pollution control and climate change mitigation results in 40% of the global population exposed to PM levels below the WHO air quality guideline; with the largest improvements estimated for India, China, and Middle East. Our results stress the importance of integrated multisector policy approaches to achieve the Sustainable Development Goals.

Loading...
Thumbnail Image
Item

Mitigation choices impact carbon budget size compatible with low temperature goals

2015, Rogelj, Joeri, Reisinger, Andy, McCollum, David L., Knutti, Reto, Riahi, Keywan, Meinshausen, Malte

Global-mean temperature increase is roughly proportional to cumulative emissions of carbon-dioxide (CO2). Limiting global warming to any level thus implies a finite CO2 budget. Due to geophysical uncertainties, the size of such budgets can only be expressed in probabilistic terms and is further influenced by non-CO2 emissions. We here explore how societal choices related to energy demand and specific mitigation options influence the size of carbon budgets for meeting a given temperature objective. We find that choices that exclude specific CO2 mitigation technologies (like Carbon Capture and Storage) result in greater costs, smaller compatible CO2 budgets until 2050, but larger CO2 budgets until 2100. Vice versa, choices that lead to a larger CO2 mitigation potential result in CO2 budgets until 2100 that are smaller but can be met at lower costs. In most cases, these budget variations can be explained by the amount of non-CO2 mitigation that is carried out in conjunction with CO2, and associated global carbon prices that also drive mitigation of non-CO2 gases. Budget variations are of the order of 10% around their central value. In all cases, limiting warming to below 2 °C thus still implies that CO2 emissions need to be reduced rapidly in the coming decades.

Loading...
Thumbnail Image
Item

The Vulnerability, Impacts, Adaptation and Climate Services Advisory Board (VIACS AB v1.0) contribution to CMIP6

2016, Ruane, Alex C., Teichmann, Claas, Arnell, Nigel W., Carter, Timothy R., Ebi, Kristie L., Frieler, Katja, Goodess, Clare M., Hewitson, Bruce, Horton, Radley, Kovats, R. Sari, Lotze, Heike K., Mearns, Linda O., Navarra, Antonio, Ojima, Dennis S., Riahi, Keywan, Rosenzweig, Cynthia, Themessl, Matthias, Vincent, Katharine

This paper describes the motivation for the creation of the Vulnerability, Impacts, Adaptation and Climate Services (VIACS) Advisory Board for the Sixth Phase of the Coupled Model Intercomparison Project (CMIP6), its initial activities, and its plans to serve as a bridge between climate change applications experts and climate modelers. The climate change application community comprises researchers and other specialists who use climate information (alongside socioeconomic and other environmental information) to analyze vulnerability, impacts, and adaptation of natural systems and society in relation to past, ongoing, and projected future climate change. Much of this activity is directed toward the co-development of information needed by decision-makers for managing projected risks. CMIP6 provides a unique opportunity to facilitate a two-way dialog between climate modelers and VIACS experts who are looking to apply CMIP6 results for a wide array of research and climate services objectives. The VIACS Advisory Board convenes leaders of major impact sectors, international programs, and climate services to solicit community feedback that increases the applications relevance of the CMIP6-Endorsed Model Intercomparison Projects (MIPs). As an illustration of its potential, the VIACS community provided CMIP6 leadership with a list of prioritized climate model variables and MIP experiments of the greatest interest to the climate model applications community, indicating the applicability and societal relevance of climate model simulation outputs. The VIACS Advisory Board also recommended an impacts version of Obs4MIPs and indicated user needs for the gridding and processing of model output.

Loading...
Thumbnail Image
Item

Climate extremes, land–climate feedbacks and land-use forcing at 1.5°C

2018, Seneviratne, Sonia I., Wartenburger, Richard, Guillod, Benoit P., Hirsch, Annette L., Vogel, Martha M., Brovkin, Victor, van Vuuren, Detlef P., Schaller, Nathalie, Boysen, Lena, Calvin, Katherine V., Doelman, Jonathan, Greve, Peter, Havlik, Petr, Humpenöder, Florian, Krisztin, Tamas, Mitchell, Daniel, Popp, Alexander, Riahi, Keywan, Rogelj, Joeri, Schleussner, Carl-Friedrich, Sillmann, Jana, Stehfest, Elke

This article investigates projected changes in temperature and water cycle extremes at 1.5°C of global warming, and highlights the role of land processes and land-use changes (LUCs) for these projections. We provide new comparisons of changes in climate at 1.5°C versus 2°C based on empirical sampling analyses of transient simulations versus simulations from the ‘Half a degree Additional warming, Prognosis and Projected Impacts’ (HAPPI) multi-model experiment. The two approaches yield similar overall results regarding changes in climate extremes on land, and reveal a substantial difference in the occurrence of regional extremes at 1.5°C versus 2°C. Land processes mediated through soil moisture feedbacks and land-use forcing play a major role for projected changes in extremes at 1.5°C in most mid-latitude regions, including densely populated areas in North America, Europe and Asia. This has important implications for low-emissions scenarios derived from integrated assessment models (IAMs), which include major LUCs in ambitious mitigation pathways (e.g. associated with increased bioenergy use), but are also shown to differ in the simulated LUC patterns. Biogeophysical effects from LUCs are not considered in the development of IAM scenarios, but play an important role for projected regional changes in climate extremes, and are thus of high relevance for sustainable development pathways.

Loading...
Thumbnail Image
Item

Zero emission targets as long-term global goals for climate protection

2015, Rogelj, Joeri, Schaeffer, Michiel, Meinshausen, Malte, Knutti, Reto, Alcamo, Joseph, Riahi, Keywan, Hare, William

Recently, assessments have robustly linked stabilization of global-mean temperature rise to the necessity of limiting the total amount of emitted carbon-dioxide (CO2). Halting global warming thus requires virtually zero annual CO2 emissions at some point. Policymakers have now incorporated this concept in the negotiating text for a new global climate agreement, but confusion remains about concepts like carbon neutrality, climate neutrality, full decarbonization, and net zero carbon or net zero greenhouse gas (GHG) emissions. Here we clarify these concepts, discuss their appropriateness to serve as a long-term global benchmark for achieving temperature targets, and provide a detailed quantification. We find that with current pledges and for a likely (>66%) chance of staying below 2 °C, the scenario literature suggests net zero CO2 emissions between 2060 and 2070, with net negative CO2 emissions thereafter. Because of residual non-CO2 emissions, net zero is always reached later for total GHG emissions than for CO2. Net zero emissions targets are a useful focal point for policy, linking a global temperature target and socio-economic pathways to a necessary long-term limit on cumulative CO2 emissions.

Loading...
Thumbnail Image
Item

Global emissions pathways under different socioeconomic scenarios for use in CMIP6: a dataset of harmonized emissions trajectories through the end of the century

2019, Gidden, Matthew J., Riahi, Keywan, Smith, Steven J., Fujimori, Shinichiro, Luderer, Gunnar, Kriegler, Elmar, van Vuuren, Detlef P., van den Berg, Maarten, Feng, Leyang, Klein, David, Calvin, Katherine, Doelman, Jonathan C., Frank, Stefan, Fricko, Oliver, Harmsen, Mathijs, Hasegawa, Tomoko, Havlik, Petr, Hilaire, Jérôme, Hoesly, Rachel, Horing, Jill, Popp, Alexander, Stehfest, Elke, Takahashi, Kiyoshi

We present a suite of nine scenarios of future emissions trajectories of anthropogenic sources, a key deliverable of the ScenarioMIP experiment within CMIP6. Integrated assessment model results for 14 different emissions species and 13 emissions sectors are provided for each scenario with consistent transitions from the historical data used in CMIP6 to future trajectories using automated harmonization before being downscaled to provide higher emissions source spatial detail. We find that the scenarios span a wide range of end-of-century radiative forcing values, thus making this set of scenarios ideal for exploring a variety of warming pathways. The set of scenarios is bounded on the low end by a 1.9 W m−2 scenario, ideal for analyzing a world with end-of-century temperatures well below 2 ∘C, and on the high end by a 8.5 W m−2 scenario, resulting in an increase in warming of nearly 5 ∘C over pre-industrial levels. Between these two extremes, scenarios are provided such that differences between forcing outcomes provide statistically significant regional temperature outcomes to maximize their usefulness for downstream experiments within CMIP6. A wide range of scenario

Loading...
Thumbnail Image
Item

Impact of short-lived non-CO2 mitigation on carbon budgets for stabilizing global warming

2015, Rogelj, Joeri, Meinshausen, Malte, Schaeffer, Michiel, Knutti, Reto, Riahi, Keywan

Limiting global warming to any level requires limiting the total amount of CO2 emissions, or staying within a CO2 budget. Here we assess how emissions from short-lived non-CO2 species like methane, hydrofluorocarbons (HFCs), black-carbon, and sulphates influence these CO2 budgets. Our default case, which assumes mitigation in all sectors and of all gases, results in a CO2 budget between 2011–2100 of 340 PgC for a >66% chance of staying below 2°C, consistent with the assessment of the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Extreme variations of air-pollutant emissions from black-carbon and sulphates influence this budget by about ±5%. In the hypothetical case of no methane or HFCs mitigation—which is unlikely when CO2 is stringently reduced—the budgets would be much smaller (40% or up to 60%, respectively). However, assuming very stringent CH4 mitigation as a sensitivity case, CO2 budgets could be 25% higher. A limit on cumulative CO2 emissions remains critical for temperature targets. Even a 25% higher CO2 budget still means peaking global emissions in the next two decades, and achieving net zero CO2 emissions during the third quarter of the 21st century. The leverage we have to affect the CO2 budget by targeting non-CO2 diminishes strongly along with CO2 mitigation, because these are partly linked through economic and technological factors.

Loading...
Thumbnail Image
Item

2°C and SDGs: United they stand, divided they fall?

2016, von Stechow, Christoph, Minx, Jan C., Riahi, Keywan, Jewell, Jessica, McCollum, David L., Callaghan, Max W., Bertram, Christoph, Luderer, Gunnar, Baiocchi, Giovanni

The adoption of the Sustainable Development Goals (SDGs) and the new international climate treaty could put 2015 into the history books as a defining year for setting human development on a more sustainable pathway. The global climate policy and SDG agendas are highly interconnected: the way that the climate problem is addressed strongly affects the prospects of meeting numerous other SDGs and vice versa. Drawing on existing scenario results from a recent energy-economy-climate model inter-comparison project, this letter analyses these synergies and (risk) trade-offs of alternative 2 °C pathways across indicators relevant for energy-related SDGs and sustainable energy objectives. We find that limiting the availability of key mitigation technologies yields some co-benefits and decreases risks specific to these technologies but greatly increases many others. Fewer synergies and substantial trade-offs across SDGs are locked into the system for weak short-term climate policies that are broadly in line with current Intended Nationally Determined Contributions (INDCs), particularly when combined with constraints on technologies. Lowering energy demand growth is key to managing these trade-offs and creating synergies across multiple energy-related SD dimensions. We argue that SD considerations are central for choosing socially acceptable 2 °C pathways: the prospects of meeting other SDGs need not dwindle and can even be enhanced for some goals if appropriate climate policy choices are made. Progress on the climate policy and SDG agendas should therefore be tracked within a unified framework.