Search Results

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Item

Uncovering the (un-)occupied electronic structure of a buried hybrid interface

2019, Vempati, S., Deinert, J.-C., Gierster, L., Bogner, L., Richter, C., Mutz, N., Blumstengel, S., Zykov, A., Kowarik, S., Garmshausen, Y., Hildebrandt, J., Hecht, S., Stahler, J.

The energy level alignment at organic/inorganic (o/i) semiconductor interfaces is crucial for any light-emitting or -harvesting functionality. Essential is the access to both occupied and unoccupied electronic states directly at the interface, which is often deeply buried underneath thick organic films and challenging to characterize. We use several complementary experimental techniques to determine the electronic structure of p-quinquephenyl pyridine (5P-Py) adsorbed on ZnO(1 0 -1 0). The parent anchoring group, pyridine, significantly lowers the work function by up to 2.9 eV and causes an occupied in-gap state (IGS) directly below the Fermi level E F . Adsorption of upright-standing 5P-Py also leads to a strong work function reduction of up to 2.1 eV and to a similar IGS. The latter is then used as an initial state for the transient population of three normally unoccupied molecular levels through optical excitation and, due to its localization right at the o/i interface, provides interfacial sensitivity, even for thick 5P-Py films. We observe two final states above the vacuum level and one bound state at around 2 eV above E F , which we attribute to the 5P-Py LUMO. By the separate study of anchoring group and organic dye combined with the exploitation of the occupied IGS for selective interfacial photoexcitation, this work provides a new pathway for characterizing the electronic structure at buried o/i interfaces. © 2019 IOP Publishing Ltd.

Loading...
Thumbnail Image
Item

Photon-electron coincidence experiments at synchrotron radiation facilities with arbitrary bunch modes

2021, Ozga, C., Honisch, C., Schmidt, P., Holzapfel, X., Zindel, C., Küstner-Wetekam, C., Richter, C., Hergenhahn, U., Ehresmann, A., Knie, A., Hans, A.

We report the adaptation of an electron–photon coincidence detection scheme to the multibunch hybrid mode of the synchrotron radiation source BESSY II (Helmholtz-Zentrum Berlin). Single-event-based data acquisition and evaluation, combined with the use of relative detection times between the coincident particles, enable the acquisition of proper coincidence signals from a quasi-continuous excitation pattern. The background signal produced by accidental coincidences in the time difference representation is modeled using the non-coincident electron and photon spectra. We validate the method by reproducing previously published results, which were obtained in the single bunch mode, and illustrate its usability for the multibunch hybrid mode by investigating the photoionization of CO2 into CO+2 B satellite states, followed by subsequent photon emission. The radiative lifetime obtained and the electron binding energy are in good agreement with earlier publications. We expect this method to be a useful tool to extend the versatility of coincident particle detection to arbitrary operation modes of synchrotron radiation facilities and other excitation sources without the need for additional experimental adjustments.