Search Results

Now showing 1 - 5 of 5
Loading...
Thumbnail Image
Item

Analysis of electronic properties frommagnetotransport measurements on Ba(Fe1-xNix)2As2 thin films

2020, Shipulin, I., Richter, S., Thomas, A.A., Nielsch, K., Hühne, R., Martovitsky, V.

We performed a detailed structural, magnetotransport, and superconducting analysis of thin epitaxial Ba(Fe1-xNix)2As2 films with Ni doping of x = 0.05 and 0.08, as prepared by pulsed laser deposition. X-ray diffraction studies demonstrate the high crystalline perfection of the films, which have a similar quality to single crystals. Furthermore, magnetotransport measurements of the films were performed in magnetic fields up to 9 T. The results we used to estimate the density of electronic states at the Fermi level, the coefficient of electronic heat capacity, and other electronic parameters for this compound, in their dependence on the dopant concentration within the framework of the Ginzburg-Landau-Abrikosov-Gorkov theory. The comparison of the determined parameters with measurement data on comparable Ba(Fe1-xNix)2As2 single crystals shows good agreement, which confirms the high quality of the obtained films.

Loading...
Thumbnail Image
Item

Universal scaling behavior of the upper critical field in strained FeSe0.7Te0.3 thin films

2018, Yuan, F., Grinenko, V., Iida, K., Richter, S., Pukenas, A., Skrotzki, W., Sakoda, M., Naito, M., Sala, A., Putti, M., Yamashita, A., Takano, Y., Shi, Z., Nielsch, K., Hühne, R.

Revealing the universal behaviors of iron-based superconductors (FBS) is important to elucidate the microscopic theory of superconductivity. In this work, we investigate the effect of in-plane strain on the slope of the upper critical field H c2 at the superconducting transition temperature T c (i.e. -dH c2/dT) for FeSe0.7Te0.3 thin films. The in-plane strain tunes T c in a broad range, while the composition and disorder are almost unchanged. We show that -dH c2/dT scales linearly with T c, indicating that FeSe0.7Te0.3 follows the same universal behavior as observed for pnictide FBS. The observed behavior is consistent with a multiband superconductivity paired by interband interaction such as sign change s ± superconductivity.

Loading...
Thumbnail Image
Item

Structural and chemical investigations of adapted Siemens feed rods for an optimized float zone process

2013, Richter, S., Werner, M., Schley, M., Schaaff, F., Riemann, H., Rost, H.-J., Zobel, F., Kunert, R., Dold, P., Hagendorf, C.

The optimization of the float zone process for industrial application is a promising way to crystallize high purity silicon for high efficiency solar cells with reduced process costs. We investigated two differently produced Siemens rods which should be used as feed material for the float zone process. The aim is to identify and to improve material properties of the feed rods which have a high impact to the float zone process. We show here microstructural and chemical analysis comparing feed rods manufactured under standard conditions and under float zone adapted conditions. To resolve the growth behavior of the grains SEM/EBSD mappings are performed at different positions. TEM analyses are used to investigate the interface region between the mono- and the multicrystalline silicon within the Siemens feed rod. Additionally, drilled cores are cut out from the feed rods containing the region of the slim rod. Afterwards, the drilled cores are crystallized with the float zone process. Finally, carbon and oxygen measurements with FT-IR spectrometry on different positions of the crystallized drilled cores of the Siemens feed rods show the influence of the slim rod material to the float zone process.

Loading...
Thumbnail Image
Item

Electronic transitions and dielectric function tensor of a YMnO3 single crystal in the NIR-VUV spectral range

2014, Schmidt-Grund, R., Richter, S., Ebbinghaus, S.G., Lorenz, M., Bundesmann, C., Grundmann, M.

We present optical properties in the near-infrared to vacuum-ultraviolet spectral range of hexagonal YMnO3. The high-quality (110)-oriented bulk single crystal was grown by the optical floating zone technique. We have determined the tensor of the dielectric function by means of Mueller matrix ellipsometry in the wide spectral range (0.5-9.15) eV. For the spectral range below 5.4 eV, we present much more precise data compared to previous reports. For higher energies no experimental reports were given previously. The experimental dielectric function of YMnO3 agrees generally with theoretical calculations. We found the well known transitions involving hybridized oxygen-Mn states and Mn-3d states to be spectrally localized with a homogeneous Lorentzian lineshape. At energies above these transitions, we observe pseudo-transparent points where for each of the principal diagonal elements of the dielectric function tensor the imaginary part approaches zero but at different photon energies. These are followed at the onset of the high-absorption spectral range by parabolic direct band-band transitions which have not been reported so far.

Loading...
Thumbnail Image
Item

Influence of slim rod material properties to the Siemens feed rod and the float zone process

2014, Richter, S., Werner, M., Schley, M., Schaaff, F., Riemann, H., Rost, H.-J., Zobel, F., Kunert, R., Dold, P., Hagendorf, C.

The identification and understanding of material properties influencing the float zone process is important to crystallize high purity silicon for high efficiency solar cells. Also the knowledge of minimal requirements to crystallize monocrystalline silicon with the float zone process is of interest from an economic point of view. In the present study, feed rods for the float zone process composed of a central slim rod and the deposited silicon from the Siemens process are investigated. Previous studies have shown that the slim rod has a significant impact on the purity and suitability for further crystallization processes. In particular, contaminations like substitutional carbon and the presence of precipitates as well as the formation of oxide layers play an important role and are investigated in detail. For this purpose different slim rod materials were used in deposition and float zone crystallization experiments. Samples were prepared by cross sectioning and core drilling of Siemens rods, which were recrystallized with the float zone process. Recrystallized drilled cores are analyzed with FT-IR spectrometry concerning the carbon and oxygen content. To estimate the grain growth behavior on the slim rod surface in dependence of the used slim rod material, EBSD mappings inside a SEM are performed on squared and circular slim rods. TEM analysis was used to investigate the presence of an oxide layer at the interface between slim rod and deposited polycrystalline silicon. Additionally the influence of a nitrogen-containing gas atmosphere during the slim rod pulling is investigated by IR microscopy and ToF-SIMS regarding Si3N4 precipitation.