Search Results

Now showing 1 - 10 of 34
  • Item
    Analysis and simulation of multifrequency induction hardening
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2013) Hömberg, Dietmar; Petzold, Thomas; Rocca, Elisabetta
    We study a model for induction hardening of steel. The related differential system consists of a time domain vector potential formulation of the Maxwells equations coupled with an internal energy balance and an ODE for the volume fraction of austenite, the high temperature phase in steel. We first solve the initial boundary value problem associated by means of a Schauder fixed point argument coupled with suitable a-priori estimates and regularity results. Moreover, we prove a stability estimate entailing, in particular, uniqueness of solutions for our Cauchy problem. We conclude with some finite element simulations for the coupled system.
  • Item
    Generalized gradient flow structure of internal energy driven phase field systems
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2015) Bonetti, Elena; Rocca, Elisabetta
    In this paper we introduce a general abstract formulation of a variational thermomechanical model, by means of a unified derivation via a generalization of the principle of virtual powers for all the variables of the system, including the thermal one. In particular, choosing as thermal variable the entropy of the system, and as driving functional the internal energy, we get a gradient flow structure (in a suitable abstract setting) for the whole nonlinear PDE system. We prove a global in time existence of (weak) solutions result for the Cauchy problem associated to the abstract PDE system as well as uniqueness in case of suitable smoothness assumptions on the functionals.
  • Item
    On asymptotic isotropy for a hydrodynamic model of liquid crystals
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2014) Dai, Mimi; Feireisl, Eduard; Rocca, Elisabetta; Schimperna, Giulio; Schonbek, Maria E.
    We study a PDE system describing the motion of liquid crystals by means of the Q?tensor description for the crystals coupled with the incompressible Navier-Stokes system. Using the method of Fourier splitting, we show that solutions of the system tend to the isotropic state at the rate (1 + t)-β as t → ∞ for a certain β > 1/2 .
  • Item
    On a non-isothermal diffuse interface model for two-phase flows of incompressible fluids
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2014) Eleuteri, Michaela; Rocca, Elisabetta; Schimperna, Giulio
    We introduce a diffuse interface model describing the evolution of a mixture of two different viscous incompressible fluids of equal density. The main novelty of the present contribution consists in the fact that the effects of temperature on the flow are taken into account. In the mathematical model, the evolution of the velocity u is ruled by the Navier-Stokes system with temperaturedependent viscosity, while the order parameter Phi representing the concentration of one of the components of the fluid is assumed to satisfy a convective Cahn-Hilliard equation. The effects of the temperature are prescribed by a suitable form of the heat equation. However, due to quadratic forcing terms, this equation is replaced, in the weak formulation, by an equality representing energy conservation complemented with a differential inequality describing production of entropy. The main advantage of introducing this notion of solution is that, while the thermodynamical consistency is preserved, at the same time the energy-entropy formulation is more tractable mathematically. Indeed, global-in-time existence for the initial-boundary value problem associated to the weak formulation of the model is proved by deriving suitable a-priori estimates and showing weak sequential stability of families of approximating solutions.
  • Item
    Well-posedness and optimal control for a Cahn--Hilliard--Oono system with control in the mass term
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2021) Colli, Pierluigi; Gilardi, Gianni; Rocca, Elisabetta; Sprekels, Jürgen
    The paper treats the problem of optimal distributed control of a Cahn--Hilliard--Oono system in Rd, 1 ≤ d ≤ 3 with the control located in the mass term and admitting general potentials that include both the case of a regular potential and the case of some singular potential. The first part of the paper is concerned with the dependence of the phase variable on the control variable. For this purpose, suitable regularity and continuous dependence results are shown. In particular, in the case of a logarithmic potential, we need to prove an ad hoc strict separation property, and for this reason we have to restrict ourselves to the case d = 2. In the rest of the work, we study the necessary first-order optimality conditions, which are proved under suitable compatibility conditions on the initial datum of the phase variable and the time derivative of the control, at least in case of potentials having unbounded domain
  • Item
    Existence of solutions to a two-dimensional model for nonisothermal two-phase flows of incompressible fluids
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2014) Eleuteri, Michela; Rocca, Elisabetta; Schimperna, Giulio
    We consider a thermodynamically consistent diffuse interface model describing two-phase flows of incompressible fluids in a non-isothermal setting. The model was recently introduced in [12] where existence of weak solutions was proved in three space dimensions. Here, we aim at studying the properties of solutions in the two-dimensional case. In particular, we can show existence of global in time solutions satisfying a stronger formulation of the model with respect to the one considered in [12]. Moreover, we can admit slightly more general conditions on some material coefficients of the system.
  • Item
    On a diffuse interface model of tumor growth
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2014) Frigeri, Sergio; Grasselli, Maurizio; Rocca, Elisabetta
    We consider a diffuse interface model of tumor growth proposed by A. Hawkins-Daruud et al. This model consists of the Cahn-Hilliard equation for the tumor cell fraction φ nonlinearly coupled with a reaction-diffusion equation for ψ which represents the nutrient-rich extracellular water volume fraction. The coupling is expressed through a suitable proliferation functionp(φ) multiplied by the differences of the chemical potentials for φ and ψ. The system is equipped with no-flux boundary conditions which entails the conservation of the total mass, that is, the spatial average of φ+ψ. Here we prove the existence of a weak solution to the associated Cauchy problem, provided that the potential F and p satisfy sufficiently general conditions. Then we show that the weak solution is unique and continuously depends on the initial data, provided that p satisfies slightly stronger growth restrictions. Also, we demonstrate the existence of a strong solution and that any weak solution regularizes in finite time. Finally, we prove the existence of the global attractor in a phase space characterized by an a priori bounded energy.
  • Item
    Damage processes in thermoviscoelastic materials with damage-dependent thermal expansion coefficients
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2014) Heinemann, Christian; Rocca, Elisabetta
    In this paper we prove existence of global in time weak solutions for a highly nonlinear PDE system arising in the context of damage phenomena in thermoviscoelastic materials. The main novelty of the present contribution with respect to the ones already present in the literature consists in the possibility of taking into account a damage-dependent thermal expansion coefficient. This term implies the presence of nonlinear couplings in the PDE system, which make the analysis more challenging.
  • Item
    A temperature-dependent phase-field model for phase separation and damage
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2015) Heinemann, Christian; Kraus, Christiane; Rocca, Elisabetta; Rossi, Riccarda
    In this paper we study a model for phase separation and damage in thermoviscoelastic materials. The main novelty of the paper consists in the fact that, in contrast with previous works in the literature (cf., e.g., [21, 22]), we encompass in the model thermal processes, nonlinearly coupled with the damage, concentration and displacement evolutions. More in particular, we prove the existence of entropic weak solutions, resorting to a solvability concept first introduced in [10] in the framework of Fourier-Navier-Stokes systems and then recently employed in [9, 38] for the study of PDE systems for phase transition and damage. Our global-intime existence result is obtained by passing to the limit in a carefully devised time-discretization scheme.
  • Item
    Optimal distributed control of a nonlocal convective Cahn-Hilliard equation by the velocity in 3D
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2014) Rocca, Elisabetta; Sprekels, Jürgen
    In this paper we study a distributed optimal control problem for a nonlocal convective Cahn-Hilliard equation with degenerate mobility and singular potential in three dimensions of space. While the cost functional is of standard tracking type, the control problem under investigation cannot easily be treated via standard techniques for two reasons: The state system is a highly nonlinear system of PDEs containing singular and degenerating terms, and the control variable, which is given by the velocity of the motion occurring in the convective term, is nonlinearly coupled to the state variable. The latter fact makes it necessary to state rather special regularity assumptions for the admissible controls, which, while looking a bit nonstandard, are however quite natural in the corresponding analytical framework. In fact, they are indispensable prerequisites to guarantee the well-posedness of the associated state system. In this contribution, we employ recently proved existence, uniqueness and regularity results for the solution to the associated state system in order to establish the existence of optimal controls and appropriate first-order necessary optimality conditions for the optimal control problem.