Search Results

Now showing 1 - 3 of 3
  • Item
    Hysteresis of tropical forests in the 21st century
    ([London] : Nature Publishing Group UK, 2020) Staal, Arie; Fetzer, Ingo; Wang-Erlandsson, Lan; Bosmans, Joyce H. C.; Dekker, Stefan C.; van Nes, Egbert H.; Rockström, Johan; Tuinenburg, Obbe A.
    Tropical forests modify the conditions they depend on through feedbacks at different spatial scales. These feedbacks shape the hysteresis (history-dependence) of tropical forests, thus controlling their resilience to deforestation and response to climate change. Here, we determine the emergent hysteresis from local-scale tipping points and regional-scale forest-rainfall feedbacks across the tropics under the recent climate and a severe climate-change scenario. By integrating remote sensing, a global hydrological model, and detailed atmospheric moisture tracking simulations, we find that forest-rainfall feedback expands the geographic range of possible forest distributions, especially in the Amazon. The Amazon forest could partially recover from complete deforestation, but may lose that resilience later this century. The Congo forest currently lacks resilience, but is predicted to gain it under climate change, whereas forests in Australasia are resilient under both current and future climates. Our results show how tropical forests shape their own distributions and create the climatic conditions that enable them.
  • Item
    Rootzone storage capacity reveals drought coping strategies along rainforest-savanna transitions
    (Bristol : IOP Publ., 2020) Singh, Chandrakant; Wang-Erlandsson, Lan; Fetzer, Ingo; Rockström, Johan; van der Ent, Ruud
    Climate change and deforestation have increased the risk of drought-induced forest-to-savanna transitions across the tropics and subtropics. However, the present understanding of forest-savanna transitions is generally focused on the influence of rainfall and fire regime changes, but does not take into account the adaptability of vegetation to droughts by utilizing subsoil moisture in a quantifiable metric. Using rootzone storage capacity (Sr), which is a novel metric to represent the vegetation's ability to utilize subsoil moisture storage and tree cover (TC), we analyze and quantify the occurrence of these forest-savanna transitions along transects in South America and Africa. We found forest-savanna transition thresholds to occur around a Sr of 550–750 mm for South America and 400–600 mm for Africa in the range of 30%–40% TC. Analysis of empirical and statistical patterns allowed us to classify the ecosystem's adaptability to droughts into four classes of drought coping strategies: lowly water-stressed forest (shallow roots, high TC), moderately water-stressed forest (investing in Sr, high TC), highly water-stressed forest (trade-off between investments in Sr and TC) and savanna-grassland regime (competitive rooting strategy, low TC). The insights from this study are useful for improved understanding of tropical eco-hydrological adaptation, drought coping strategies, and forest ecosystem regime shifts under future climate change.
  • Item
    Is wetter better? Exploring agriculturally-relevant rainfall characteristics over four decades in the Sahel
    (Bristol : IOP Publ., 2021-2-11) Porkka, Miina; Wang-Erlandsson, Lan; Destouni, Georgia; Ekman, Annica M. L.; Rockström, Johan; Gordon, Line J.
    The semi-arid Sahel is a global hotspot for poverty and malnutrition. Rainfed agriculture is the main source of food and income, making the well-being of rural population highly sensitive to rainfall variability. Studies have reported an upward trend in annual precipitation in the Sahel since the drought of the 1970s and early ‘80s, yet farmers have questioned improvements in conditions for agriculture, suggesting that intraseasonal dynamics play a crucial role. Using high-resolution daily precipitation data spanning 1981–2017 and focusing on agriculturally-relevant areas of the Sahel, we re-examined the extent of rainfall increase and investigated whether the increases have been accompanied by changes in two aspects of intraseasonal variability that have relevance for agriculture: rainy season duration and occurrence of prolonged dry spells during vulnerable crop growth stages. We found that annual rainfall increased across 56% of the region, but remained largely the same elsewhere. Rainy season duration increased almost exclusively in areas with upward trends in annual precipitation (23% of them). Association between annual rain and dry spell occurrence was less clear: increasing and decreasing frequencies of false starts (dry spells after first rains) and post-floral dry spells (towards the end of the season) were found to almost equal extent both in areas with positive and those with no significant trend in annual precipitation. Overall, improvements in at least two of the three intraseasonal variables (and no declines in any) were found in 10% of the region, while over a half of the area experienced declines in at least one intraseasonal variable, or no improvement in any. We conclude that rainfall conditions for agriculture have improved overall only in scattered areas across the Sahel since the 1980s, and increased annual rainfall is only weakly, if at all, associated with changes in the agriculturally-relevant intraseasonal rainfall characteristics.