Search Results

Now showing 1 - 10 of 19
  • Item
    A sustainable waste-to-protein system to maximise waste resource utilisation for developing food- and feed-grade protein solutions
    (Cambridge : Royal Society of Chemistry, 2022) Piercy, Ellen; Verstraete, Willy; Ellis, Peter R.; Banks, Mason; Rockström, Johan; Smith, Pete; Witard, Oliver C.; Hallett, Jason; Hogstrand, Christer; Knott, Geoffrey; Karwati, Ai; Rasoarahona, Henintso Felamboahangy; Leslie, Andrew; He, Yiying; Guo, Miao
    A waste-to-protein system that integrates a range of waste-to-protein upgrading technologies has the potential to converge innovations on zero-waste and protein security to ensure a sustainable protein future. We present a global overview of food-safe and feed-safe waste resource potential and technologies to sort and transform such waste streams with compositional quality characteristics into food-grade or feed-grade protein. The identified streams are rich in carbon and nutrients and absent of pathogens and hazardous contaminants, including food waste streams, lignocellulosic waste from agricultural residues and forestry, and contaminant-free waste from the food and drink industry. A wide range of chemical, physical, and biological treatments can be applied to extract nutrients and convert waste-carbon to fermentable sugars or other platform chemicals for subsequent conversion to protein. Our quantitative analyses suggest that the waste-to-protein system has the potential to maximise recovery of various low-value resources and catalyse the transformative solutions toward a sustainable protein future. However, novel protein regulation processes remain expensive and resource intensive in many countries, with protracted timelines for approval. This poses a significant barrier to market expansion, despite accelerated research and development in waste-to-protein technologies and novel protein sources. Thus, the waste-to-protein system is an important initiative to promote metabolic health across lifespans and tackle the global hunger crisis.
  • Item
    Articulating the effect of food systems innovation on the Sustainable Development Goals
    (Amsterdam : Elsevier, 2021) Herrero, Mario; Thornton, Philip K.; Mason-D'Croz, Daniel; Palmer, Jeda; Bodirsky, Benjamin L.; Pradhan, Prajal; Barrett, Christopher B.; Benton, Tim G.; Hall, Andrew; Pikaar, Ilje; Bogard, Jessica R.; Bonnett, Graham D.; Bryan, Brett A.; Campbell, Bruce M.; Christensen, Svend; Clark, Michael; Fanzo, Jessica; Godde, Cecile M.; Jarvis, Andy; Loboguerrero, Ana Maria; Mathys, Alexander; McIntyre, C. Lynne; Naylor, Rosamond L.; Nelson, Rebecca; Obersteiner, Michael; Parodi, Alejandro; Popp, Alexander; Ricketts, Katie; Smith, Pete; Valin, Hugo; Vermeulen, Sonja J.; Vervoort, Joost; van Wijk, Mark; van Zanten, Hannah HE; West, Paul C.; Wood, Stephen A.; Rockström, Johan
    Food system innovations will be instrumental to achieving multiple Sustainable Development Goals (SDGs). However, major innovation breakthroughs can trigger profound and disruptive changes, leading to simultaneous and interlinked reconfigurations of multiple parts of the global food system. The emergence of new technologies or social solutions, therefore, have very different impact profiles, with favourable consequences for some SDGs and unintended adverse side-effects for others. Stand-alone innovations seldom achieve positive outcomes over multiple sustainability dimensions. Instead, they should be embedded as part of systemic changes that facilitate the implementation of the SDGs. Emerging trade-offs need to be intentionally addressed to achieve true sustainability, particularly those involving social aspects like inequality in its many forms, social justice, and strong institutions, which remain challenging. Trade-offs with undesirable consequences are manageable through the development of well planned transition pathways, careful monitoring of key indicators, and through the implementation of transparent science targets at the local level.
  • Item
    Hysteresis of tropical forests in the 21st century
    ([London] : Nature Publishing Group UK, 2020) Staal, Arie; Fetzer, Ingo; Wang-Erlandsson, Lan; Bosmans, Joyce H. C.; Dekker, Stefan C.; van Nes, Egbert H.; Rockström, Johan; Tuinenburg, Obbe A.
    Tropical forests modify the conditions they depend on through feedbacks at different spatial scales. These feedbacks shape the hysteresis (history-dependence) of tropical forests, thus controlling their resilience to deforestation and response to climate change. Here, we determine the emergent hysteresis from local-scale tipping points and regional-scale forest-rainfall feedbacks across the tropics under the recent climate and a severe climate-change scenario. By integrating remote sensing, a global hydrological model, and detailed atmospheric moisture tracking simulations, we find that forest-rainfall feedback expands the geographic range of possible forest distributions, especially in the Amazon. The Amazon forest could partially recover from complete deforestation, but may lose that resilience later this century. The Congo forest currently lacks resilience, but is predicted to gain it under climate change, whereas forests in Australasia are resilient under both current and future climates. Our results show how tropical forests shape their own distributions and create the climatic conditions that enable them.
  • Item
    Assessment of the growth in social groups for sustainable agriculture and land management
    (Cambridge : Cambridge Univ. Press, 2020) Pretty, Jules; Attwood, Simon; Bawden, Richard; van den Berg, Henk; Bharucha, Zareen P.; Dixon, John; Butler Flora, Cornelia; Gallagher, Kevin; Genskow, Ken; Hartley, Sue E.; Ketelaar, Jan Willem; Kiara, Japhet K.; Kumar, Vijay; Lu, Yuelai; MacMillan, Tom; Maréchal, Anne; Morales-Abubakar, Alma Linda; Noble, Andrew; Prasad, P. V. Vara; Rametsteiner, Ewald; Reganold, John; Ricks, Jacob I.; Rockström, Johan; Saito, Osamu; Thorne, Peter; Wang, Songliang; Wittman, Hannah; Winter, Michael; Yang, Puyun
    Non-technical summary Until the past half-century, all agriculture and land management was framed by local institutions strong in social capital. But neoliberal forms of development came to undermine existing structures, thus reducing sustainability and equity. The past 20 years, though, have seen the deliberate establishment of more than 8 million new social groups across the world. This restructuring and growth of rural social capital within specific territories is leading to increased productivity of agricultural and land management systems, with particular benefits for those previously excluded. Further growth would occur with more national and regional policy support. Technical summary For agriculture and land management to improve natural capital over whole landscapes, social cooperation has long been required. The political economy of the later twentieth and early twenty-first centuries prioritized unfettered individual action over the collective, and many rural institutions were harmed or destroyed. Since then, a wide range of social movements, networks and federations have emerged to support transitions towards sustainability and equity. Here, we focus on social capital manifested as intentionally formed collaborative groups within specific geographic territories. These groups focus on: (1) integrated pest management; (2) forests; (3) land; (4) water; (5) pastures; (6) support services; (7) innovation platforms; and (8) small-scale systems. We show across 122 initiatives in 55 countries that the number of groups has grown from 0.50 million (in 2000) to 8.54 million (in 2020). The area of land transformed by the 170–255 million group members is 300 Mha, mostly in less-developed countries (98% groups; 94% area). Farmers and land managers working with scientists and extensionists in these groups have improved both environmental outcomes and agricultural productivity. In some cases, changes to national or regional policy supported this growth in groups. Together with other movements, these social groups could now support further transitions towards policies and behaviours for global sustainability. Social media summary Millions of geographically based new social groups are leading to more sustainable agriculture and forestry worldwide. © The Author(s), 2020.
  • Item
    Social tipping dynamics for stabilizing Earth's climate by 2050
    (2020) Otto, Ilona M.; Donges, Jonathan F.; Cremades, Roger; Bhowmik, Avit; Hewitt, Richard J.; Lucht, Wolfgang; Rockström, Johan; Allerberger, Franziska; McCaffrey, Mark; Doe, Sylvanus S.P.; Lenferna, Alex; Morán, Nerea; van Vuuren, Detlef P.; Schellnhuber, Hans Joachim
    Safely achieving the goals of the Paris Climate Agreement requires a worldwide transformation to carbon-neutral societies within the next 30 y. Accelerated technological progress and policy implementations are required to deliver emissions reductions at rates sufficiently fast to avoid crossing dangerous tipping points in the Earth's climate system. Here, we discuss and evaluate the potential of social tipping interventions (STIs) that can activate contagious processes of rapidly spreading technologies, behaviors, social norms, and structural reorganization within their functional domains that we refer to as social tipping elements (STEs). STEs are subdomains of the planetary socioeconomic system where the required disruptive change may take place and lead to a sufficiently fast reduction in anthropogenic greenhouse gas emissions. The results are based on online expert elicitation, a subsequent expert workshop, and a literature review. The STIs that could trigger the tipping of STE subsystems include 1) removing fossil-fuel subsidies and incentivizing decentralized energy generation (STE1, energy production and storage systems), 2) building carbon-neutral cities (STE2, human settlements), 3) divesting from assets linked to fossil fuels (STE3, financial markets), 4) revealing the moral implications of fossil fuels (STE4, norms and value systems), 5) strengthening climate education and engagement (STE5, education system), and 6) disclosing information on greenhouse gas emissions (STE6, information feedbacks). Our research reveals important areas of focus for larger-scale empirical and modeling efforts to better understand the potentials of harnessing social tipping dynamics for climate change mitigation.
  • Item
    Impacts of meeting minimum access on critical earth systems amidst the Great Inequality
    (London : Springer Nature, 2022) Rammelt, Crelis F.; Gupta, Joyeeta; Liverman, Diana; Scholtens, Joeri; Ciobanu, Daniel; Abrams, Jesse F.; Bai, Xuemei; Gifford, Lauren; Gordon, Christopher; Hurlbert, Margot; Inoue, Cristina Y. A.; Jacobson, Lisa; Lade, Steven J.; Lenton, Timothy M.; McKay, David I. Armstrong; Nakicenovic, Nebojsa; Okereke, Chukwumerije; Otto, Ilona M.; Pereira, Laura M.; Prodani, Klaudia; Rockström, Johan; Stewart-Koster, Ben; Verburg, Peter H.; Zimm, Caroline
    The Sustainable Development Goals aim to improve access to resources and services, reduce environmental degradation, eradicate poverty and reduce inequality. However, the magnitude of the environmental burden that would arise from meeting the needs of the poorest is under debate—especially when compared to much larger burdens from the rich. We show that the ‘Great Acceleration’ of human impacts was characterized by a ‘Great Inequality’ in using and damaging the environment. We then operationalize ‘just access’ to minimum energy, water, food and infrastructure. We show that achieving just access in 2018, with existing inequalities, technologies and behaviours, would have produced 2–26% additional impacts on the Earth’s natural systems of climate, water, land and nutrients—thus further crossing planetary boundaries. These hypothetical impacts, caused by about a third of humanity, equalled those caused by the wealthiest 1–4%. Technological and behavioural changes thus far, while important, did not deliver just access within a stable Earth system. Achieving these goals therefore calls for a radical redistribution of resources.
  • Item
    Our future in the Anthropocene biosphere
    (Dordrecht : Springer Netherlands, 2021) Folke, Carl; Polasky, Stephen; Rockström, Johan; Galaz, Victor; Westley, Frances; Lamont, Michèle; Scheffer, Marten; Österblom, Henrik; Carpenter, Stephen R.; Chapin, F. Stuart; Seto, Karen C.; Weber, Elke U.; Crona, Beatrice I.; Daily, Gretchen C.; Dasgupta, Partha; Gaffney, Owen; Gordon, Line J.; Hoff, Holger; Levin, Simon A.; Lubchenco, Jane; Steffen, Will; Walker, Brian H.
    The COVID-19 pandemic has exposed an interconnected and tightly coupled globalized world in rapid change. This article sets the scientific stage for understanding and responding to such change for global sustainability and resilient societies. We provide a systemic overview of the current situation where people and nature are dynamically intertwined and embedded in the biosphere, placing shocks and extreme events as part of this dynamic; humanity has become the major force in shaping the future of the Earth system as a whole; and the scale and pace of the human dimension have caused climate change, rapid loss of biodiversity, growing inequalities, and loss of resilience to deal with uncertainty and surprise. Taken together, human actions are challenging the biosphere foundation for a prosperous development of civilizations. The Anthropocene reality—of rising system-wide turbulence—calls for transformative change towards sustainable futures. Emerging technologies, social innovations, broader shifts in cultural repertoires, as well as a diverse portfolio of active stewardship of human actions in support of a resilient biosphere are highlighted as essential parts of such transformations. © 2021, The Author(s).
  • Item
    All options, not silver bullets, needed to limit global warming to 1.5 °C: a scenario appraisal
    (Bristol : IOP Publ., 2021-5-25) Warszawski, Lila; Kriegler, Elmar; Lenton, Timothy M.; Gaffney, Owen; Jacob, Daniela; Klingenfeld, Daniel; Koide, Ryu; Máñez Costa, María; Messner, Dirk; Nakicenovic, Nebojsa; Schellnhuber, Hans Joachim; Schlosser, Peter; Takeuchi, Kazuhiko; Van Der Leeuw, Sander; Whiteman, Gail; Rockström, Johan
    Climate science provides strong evidence of the necessity of limiting global warming to 1.5 °C, in line with the Paris Climate Agreement. The IPCC 1.5 °C special report (SR1.5) presents 414 emissions scenarios modelled for the report, of which around 50 are classified as '1.5 °C scenarios', with no or low temperature overshoot. These emission scenarios differ in their reliance on individual mitigation levers, including reduction of global energy demand, decarbonisation of energy production, development of land-management systems, and the pace and scale of deploying carbon dioxide removal (CDR) technologies. The reliance of 1.5 °C scenarios on these levers needs to be critically assessed in light of the potentials of the relevant technologies and roll-out plans. We use a set of five parameters to bundle and characterise the mitigation levers employed in the SR1.5 1.5 °C scenarios. For each of these levers, we draw on the literature to define 'medium' and 'high' upper bounds that delineate between their 'reasonable', 'challenging' and 'speculative' use by mid century. We do not find any 1.5 °C scenarios that stay within all medium upper bounds on the five mitigation levers. Scenarios most frequently 'over use' CDR with geological storage as a mitigation lever, whilst reductions of energy demand and carbon intensity of energy production are 'over used' less frequently. If we allow mitigation levers to be employed up to our high upper bounds, we are left with 22 of the SR1.5 1.5 °C scenarios with no or low overshoot. The scenarios that fulfil these criteria are characterised by greater coverage of the available mitigation levers than those scenarios that exceed at least one of the high upper bounds. When excluding the two scenarios that exceed the SR1.5 carbon budget for limiting global warming to 1.5 °C, this subset of 1.5 °C scenarios shows a range of 15–22 Gt CO2 (16–22 Gt CO2 interquartile range) for emissions in 2030. For the year of reaching net zero CO2 emissions the range is 2039–2061 (2049–2057 interquartile range).
  • Item
    Resolving ecological feedbacks on the ocean carbon sink in Earth system models
    (Göttingen : Copernicus Publ., 2021) Armstrong McKay, David I.; Cornell, Sarah E.; Richardson, Katherine; Rockström, Johan
    The Earth's oceans are one of the largest sinks in the Earth system for anthropogenic CO2 emissions, acting as a negative feedback on climate change. Earth system models project that climate change will lead to a weakening ocean carbon uptake rate as warm water holds less dissolved CO2 and as biological productivity declines. However, most Earth system models do not incorporate the impact of warming on bacterial remineralisation and rely on simplified representations of plankton ecology that do not resolve the potential impact of climate change on ecosystem structure or elemental stoichiometry. Here, we use a recently developed extension of the cGEnIE (carbon-centric Grid Enabled Integrated Earth system model), ecoGEnIE, featuring a trait-based scheme for plankton ecology (ECOGEM), and also incorporate cGEnIE's temperature-dependent remineralisation (TDR) scheme. This enables evaluation of the impact of both ecological dynamics and temperature-dependent remineralisation on particulate organic carbon (POC) export in response to climate change. We find that including TDR increases cumulative POC export relative to default runs due to increased nutrient recycling (+∼1.3 %), whereas ECOGEM decreases cumulative POC export by enabling a shift to smaller plankton classes (−∼0.9 %). However, interactions with carbonate chemistry cause opposite sign responses for the carbon sink in both cases: TDR leads to a smaller sink relative to default runs (−∼1.0 %), whereas ECOGEM leads to a larger sink (+∼0.2 %). Combining TDR and ECOGEM results in a net strengthening of POC export (+∼0.1 %) and a net reduction in carbon sink (−∼0.7 %) relative to default. These results illustrate the degree to which ecological dynamics and biodiversity modulate the strength of the biological pump, and demonstrate that Earth system models need to incorporate ecological complexity in order to resolve non-linear climate–biosphere feedbacks.
  • Item
    Reply to Bhowmik et al.: Democratic climate action and studying extreme climate risks are not in tension
    (Washington, DC : National Acad. of Sciences, 2022) Kemp, Luke; Xu, Chi; Depledge, Joanna; Ebi, Kristie L.; Gibbins, Goodwin; Kohler, Timothy A.; Rockström, Johan; Scheffer, Marten; Schellnhuber, Hans Joachim; Steffen, Will; Lenton, Timothy M.
    [no abstract available]