Search Results

Now showing 1 - 2 of 2
  • Item
    Structure-property relationship of Co 2 MnSi thin films in response to He + -irradiation
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2019) Hammerath, Franziska; Bali, Rantej; Hübner, René; Brandt, Mira R. D.; Rodan, Steven; Potzger, Kay; Böttger, Roman; Sakuraba, Yuya; Wurmehl, Sabine
    We investigated the structure-property relationship of Co2MnSi Heusler thin films upon the irradiation with He+ ions. The variation of the crystal structure with increasing ion fluence has been probed using nuclear magnetic resonance (NMR) and transmission electron microscopy (TEM), and associated with the corresponding changes of the magnetic behavior. A decrease of both the structural order and the moment in saturation is observed. Specifically, we detect a direct transition from a highly L21-ordered to a fully A2-disordered structure type and quantify the evolution of the A2 structural contribution as a function of ion fluence. Complementary TEM analysis reveals a spatially-resolved distribution of the L21 and A2 phases showing that the A2 disorder starts at the upper part of the films. The structural degradation in turn leads to a decreasing magnetic moment in saturation in response to the increasing fluence.
  • Item
    Spin-orbit coupling control of anisotropy, ground state and frustration in 5d2 Sr2MgOsO6
    (London : Nature Publishing Group, 2016) Morrow, Ryan; Taylor, Alice E.; Singh, D.J.; Xiong, Jie; Rodan, Steven; Wolter, A.U.B.; Wurmehl, Sabine; Büchner, Bernd; Stone, M.B.; Kolesnikov, A.I.; Aczel, Adam A.; Christianson, A.D.; Woodward, Patrick M.
    The influence of spin-orbit coupling (SOC) on the physical properties of the 5d2 system Sr2MgOsO6 is probed via a combination of magnetometry, specific heat measurements, elastic and inelastic neutron scattering, and density functional theory calculations. Although a significant degree of frustration is expected, we find that Sr2MgOsO6 orders in a type I antiferromagnetic structure at the remarkably high temperature of 108 K. The measurements presented allow for the first accurate quantification of the size of the magnetic moment in a 5d2 system of 0.60(2) μB –a significantly reduced moment from the expected value for such a system. Furthermore, significant anisotropy is identified via a spin excitation gap, and we confirm by first principles calculations that SOC not only provides the magnetocrystalline anisotropy, but also plays a crucial role in determining both the ground state magnetic order and the size of the local moment in this compound. Through comparison to Sr2ScOsO6, it is demonstrated that SOC-induced anisotropy has the ability to relieve frustration in 5d2 systems relative to their 5d3 counterparts, providing an explanation of the high TN found in Sr2MgOsO6.