Search Results

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Item

Eosinophils and Neutrophils-Molecular Differences Revealed by Spontaneous Raman, CARS and Fluorescence Microscopy

2020, Dorosz, Aleksandra, Grosicki, Marek, Dybas, Jakub, Matuszyk, Ewelina, Rodewald, Marko, Meyer, Tobias, Popp, Jürgen, Malek, Kamilla, Baranska, Malgorzata

Leukocytes are a part of the immune system that plays an important role in the host's defense against viral, bacterial, and fungal infections. Among the human leukocytes, two granulocytes, neutrophils (Ne) and eosinophils (EOS) play an important role in the innate immune system. For that purpose, eosinophils and neutrophils contain specific granules containing protoporphyrin-type proteins such as eosinophil peroxidase (EPO) and myeloperoxidase (MPO), respectively, which contribute directly to their anti-infection activity. Since both proteins are structurally and functionally different, they could potentially be a marker of both cells' types. To prove this hypothesis, UV-Vis absorption spectroscopy and Raman imaging were applied to analyze EPO and MPO and their content in leukocytes isolated from the whole blood. Moreover, leukocytes can contain lipidic structures, called lipid bodies (LBs), which are linked to the regulation of immune responses and are considered to be a marker of cell inflammation. In this work, we showed how to determine the number of LBs in two types of granulocytes, EOS and Ne, using fluorescence and coherent anti-Stokes Raman scattering (CARS) microscopy. Spectroscopic differences of EPO and MPO can be used to identify these cells in blood samples, while the detection of LBs can indicate the cell inflammation process.

Loading...
Thumbnail Image
Item

In vivo coherent anti-Stokes Raman scattering microscopy reveals vitamin A distribution in the liver

2021, Rodewald, Marko, Bae, Hyeonsoo, Huschke, Sophie, Meyer-Zedler, Tobias, Schmitt, Michael, Press, Adrian Tibor, Schubert, Stephanie, Bauer, Michael, Popp, Juergen

Here we present a microscope setup for coherent anti-Stokes Raman scattering (CARS) imaging, devised to specifically address the challenges of in vivo experiments. We exemplify its capabilities by demonstrating how CARS microscopy can be used to identify vitamin A (VA) accumulations in the liver of a living mouse, marking the positions of hepatic stellate cells (HSCs). HSCs are the main source of extracellular matrix protein after hepatic injury and are therefore the main target of novel nanomedical strategies in the development of a treatment for liver fibrosis. Their role in the VA metabolism makes them an ideal target for a CARS-based approach as they store most of the body's VA, a class of compounds sharing a retinyl group as a structural motive, a moiety that is well known for its exceptionally high Raman cross section of the C=C stretching vibration of the conjugated backbone.