Search Results

Now showing 1 - 2 of 2
  • Item
    Grafting of functional methacrylate polymer brushes by photoinduced SET-LRP
    (Cambridge : RSC Publ., 2016) Vorobii, Mariia; Pop-Georgievski, Ognen; de los Santos Pereira, Andres; Kostina, Nina Yu.; Jezorek, Ryan; Sedláková, Zdeňka; Percec, Virgil; Rodriguez-Emmenegger, Cesar
    Photoinduced surface-initiated single electron transfer living radical polymerization (SET-LRP) is a versatile technique for the preparation of polymer brushes. The vast diversity of compatible functional groups, together with a high end-group fidelity that enables precise control of the architecture, makes this approach an effective tool for tuning the properties of surfaces. We report the application of photoinduced SET-LRP for the surface-initiated grafting of polymer brushes from a wide range of methacrylate monomers for the first time. The living character of the process was demonstrated by the linear evolution of the polymer brush thickness in time, the ability to reinitiate the polymerization for the preparation of well-defined block copolymers, and also by X-ray photoelectron spectroscopy depth profiling. The surface patterning with these brushes could be achieved simply by restricting the irradiated area. The ability of poly(methacrylate) brushes prepared in this way to prevent non-specific protein adsorption is also demonstrated, indicating the suitability of this procedure for advanced applications.
  • Item
    Catalyst-free site-specific surface modifications of nanocrystalline diamond films via microchannel cantilever spotting
    (London : RSC Publishing, 2016) Davydova, Marina; de los Santos Pereira, Andres; Bruns, Michael; Kromka, Alexander; Ukraintsev, Egor; Hirtz, Michael; Rodriguez-Emmenegger, Cesar
    The properties of nanocrystalline diamond (NCD) films offer great potential for the creation of various sensing and photonic devices. A great challenge in order to materialize such applications lies in achieving the micrometrically resolved functionalization of NCD surfaces. In the present work, we introduce a facile approach to meet this challenge employing the novel strain-promoted alkyne–azide cycloaddition “click” chemistry reaction, a catalyst-free ligation protocol compatible with biomolecules. The ability to achieve well-resolved multicomponent patterns with high reproducibility is demonstrated, paving the way for the fabrication of novel devices based on micropatterned NCD films.