Search Results

Now showing 1 - 4 of 4
  • Item
    Impact of methane and black carbon mitigation on forcing and temperature: a multi-model scenario analysis
    (Dordrecht [u.a.] : Springer Science + Business Media B.V, 2020) Smith, Steven J.; Chateau, Jean; Dorheim, Kalyn; Drouet, Laurent; Durand-Lasserve, Olivier; Fricko, Oliver; Fujimori, Shinichiro; Hanaoka, Tatsuya; Harmsen, Mathijs; Hilaire, Jérôme; Keramidas, Kimon; Klimont, Zbigniew; Luderer, Gunnar; Moura, Maria Cecilia P.; Riahi, Keywan; Rogelj, Joeri; Sano, Fuminori; van Vuuren, Detlef P.; Wada, Kenichi
    The relatively short atmospheric lifetimes of methane (CH4) and black carbon (BC) have focused attention on the potential for reducing anthropogenic climate change by reducing Short-Lived Climate Forcer (SLCF) emissions. This paper examines radiative forcing and global mean temperature results from the Energy Modeling Forum (EMF)-30 multi-model suite of scenarios addressing CH4 and BC mitigation, the two major short-lived climate forcers. Central estimates of temperature reductions in 2040 from an idealized scenario focused on reductions in methane and black carbon emissions ranged from 0.18–0.26 °C across the nine participating models. Reductions in methane emissions drive 60% or more of these temperature reductions by 2040, although the methane impact also depends on auxiliary reductions that depend on the economic structure of the model. Climate model parameter uncertainty has a large impact on results, with SLCF reductions resulting in as much as 0.3–0.7 °C by 2040. We find that the substantial overlap between a SLCF-focused policy and a stringent and comprehensive climate policy that reduces greenhouse gas emissions means that additional SLCF emission reductions result in, at most, a small additional benefit of ~ 0.1 °C in the 2030–2040 time frame. © 2020, Battelle Memorial Institute.
  • Item
    Reduced Complexity Model Intercomparison Project Phase 1: introduction and evaluation of global-mean temperature response
    (Katlenburg-Lindau : Copernicus, 2020) Nicholls, Zebedee R. J.; Meinshausen, Malte; Lewis, Jared; Gieseke, Robert; Dommenget, Dietmar; Dorheim, Kalyn; Fan, Chen-Shuo; Fuglestvedt, Jan S.; Gasser, Thomas; Golüke, Ulrich; Goodwin, Philip; Hartin, Corinne; Hope, Austin P.; Kriegler, Elmar; Leach, Nicholas J.; Marchegiani, Davide; McBride, Laura A.; Quilcaille, Yann; Rogelj, Joeri; Salawitch, Ross J.; Samset, Bjørn H.; Sandstad, Marit; Shiklomanov, Alexey N.; Skeie, Ragnhild B.; Smith, Christopher J.; Smith, Steve; Tanaka, Katsumasa; Tsutsui, Junichi; Xie, Zhiang
    Reduced-complexity climate models (RCMs) are critical in the policy and decision making space, and are directly used within multiple Intergovernmental Panel on Climate Change (IPCC) reports to complement the results of more comprehensive Earth system models. To date, evaluation of RCMs has been limited to a few independent studies. Here we introduce a systematic evaluation of RCMs in the form of the Reduced Complexity Model Intercomparison Project (RCMIP). We expect RCMIP will extend over multiple phases, with Phase 1 being the first. In Phase 1, we focus on the RCMs' global-mean temperature responses, comparing them to observations, exploring the extent to which they emulate more complex models and considering how the relationship between temperature and cumulative emissions of CO2 varies across the RCMs. Our work uses experiments which mirror those found in the Coupled Model Intercomparison Project (CMIP), which focuses on complex Earth system and atmosphere–ocean general circulation models. Using both scenario-based and idealised experiments, we examine RCMs' global-mean temperature response under a range of forcings. We find that the RCMs can all reproduce the approximately 1 ∘C of warming since pre-industrial times, with varying representations of natural variability, volcanic eruptions and aerosols. We also find that RCMs can emulate the global-mean temperature response of CMIP models to within a root-mean-square error of 0.2 ∘C over a range of experiments. Furthermore, we find that, for the Representative Concentration Pathway (RCP) and Shared Socioeconomic Pathway (SSP)-based scenario pairs that share the same IPCC Fifth Assessment Report (AR5)-consistent stratospheric-adjusted radiative forcing, the RCMs indicate higher effective radiative forcings for the SSP-based scenarios and correspondingly higher temperatures when run with the same climate settings. In our idealised setup of RCMs with a climate sensitivity of 3 ∘C, the difference for the ssp585–rcp85 pair by 2100 is around 0.23∘C(±0.12 ∘C) due to a difference in effective radiative forcings between the two scenarios. Phase 1 demonstrates the utility of RCMIP's open-source infrastructure, paving the way for further phases of RCMIP to build on the research presented here and deepen our understanding of RCMs.
  • Item
    Early retirement of power plants in climate mitigation scenarios
    (Bristol : IOP Publ., 2020) Fofrich, Robert; Tong, Dan; Calvin, Katherine; De Boer, Harmen Sytze; Emmerling, Johannes; Fricko, Oliver; Fujimori, Shinichiro; Luderer, Gunnar; Rogelj, Joeri; Davis, Steven J.
    International efforts to avoid dangerous climate change aim for large and rapid reductions of fossil fuel CO2 emissions worldwide, including nearly complete decarbonization of the electric power sector. However, achieving such rapid reductions may depend on early retirement of coal- and natural gas-fired power plants. Here, we analyze future fossil fuel electricity demand in 171 energy-emissions scenarios from Integrated Assessment Models (IAMs), evaluating the implicit retirements and/or reduced operation of generating infrastructure. Although IAMs calculate retirements endogenously, the structure and methods of each model differ; we use a standard approach to infer retirements in outputs from all six major IAMs and—unlike the IAMs themselves—we begin with the age distribution and region-specific operating capacities of the existing power fleet. We find that coal-fired power plants in scenarios consistent with international climate targets (i.e. keeping global warming well-below 2 °C or 1.5 °C) retire one to three decades earlier than historically has been the case. If plants are built to meet projected fossil electricity demand and instead allowed to operate at the level and over the lifetimes they have historically, the roughly 200 Gt CO2 of additional emissions this century would be incompatible with keeping global warming well-below 2 °C. Thus, ambitious climate mitigation scenarios entail drastic, and perhaps un-appreciated, changes in the operating and/or retirement schedules of power infrastructure.
  • Item
    The IPCC Sixth Assessment Report WGIII climate assessment of mitigation pathways: from emissions to global temperatures
    (Katlenburg-Lindau : Copernicus, 2022) Kikstra, Jarmo S.; Nicholls, Zebedee R. J.; Smith, Christopher J.; Lewis, Jared; Lamboll, Robin D.; Byers, Edward; Sandstad, Marit; Meinshausen, Malte; Gidden, Matthew J.; Rogelj, Joeri; Kriegler, Elmar; Peters, Glen P.; Fuglestvedt, Jan S.; Skeie, Ragnhild B.; Samset, Bjørn H.; Wienpahl, Laura; van Vuuren, Detlef P.; van der Wijst, Kaj-Ivar; Al Khourdajie, Alaa; Forster, Piers M.; Reisinger, Andy; Schaeffer, Roberto; Riahi, Keywan
    While the Intergovernmental Panel on Climate Change (IPCC) physical science reports usually assess a handful of future scenarios, the Working Group III contribution on climate mitigation to the IPCC's Sixth Assessment Report (AR6 WGIII) assesses hundreds to thousands of future emissions scenarios. A key task in WGIII is to assess the global mean temperature outcomes of these scenarios in a consistent manner, given the challenge that the emissions scenarios from different integrated assessment models (IAMs) come with different sectoral and gas-to-gas coverage and cannot all be assessed consistently by complex Earth system models. In this work, we describe the "climate-assessment"workflow and its methods, including infilling of missing emissions and emissions harmonisation as applied to 1202 mitigation scenarios in AR6 WGIII. We evaluate the global mean temperature projections and effective radiative forcing (ERF) characteristics of climate emulators FaIRv1.6.2 and MAGICCv7.5.3 and use the CICERO simple climate model (CICERO-SCM) for sensitivity analysis. We discuss the implied overshoot severity of the mitigation pathways using overshoot degree years and look at emissions and temperature characteristics of scenarios compatible with one possible interpretation of the Paris Agreement. We find that the lowest class of emissions scenarios that limit global warming to "1.5 ° C (with a probability of greater than 50 %) with no or limited overshoot"includes 97 scenarios for MAGICCv7.5.3 and 203 for FaIRv1.6.2. For the MAGICCv7.5.3 results, "limited overshoot"typically implies exceedance of median temperature projections of up to about 0.1 ° C for up to a few decades before returning to below 1.5 ° C by or before the year 2100. For more than half of the scenarios in this category that comply with three criteria for being "Paris-compatible", including net-zero or net-negative greenhouse gas (GHG) emissions, median temperatures decline by about 0.3-0.4 ° C after peaking at 1.5-1.6 ° C in 2035-2055. We compare the methods applied in AR6 with the methods used for SR1.5 and discuss their implications. This article also introduces a "climate-assessment"Python package which allows for fully reproducing the IPCC AR6 WGIII temperature assessment. This work provides a community tool for assessing the temperature outcomes of emissions pathways and provides a basis for further work such as extending the workflow to include downscaling of climate characteristics to a regional level and calculating impacts.