Search Results

Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Item

Improved development procedure to enhance the stability of microstructures created by two-photon polymerization

2018, Purtov, Julia, Verch, Andreas, Rogin, Peter, Hensel, René

Natural functional surfaces often rely on unique nano- and micropatterns. To mimic such surfaces successfully, patterning techniques are required that enable the fabrication of three-dimensional structures at the nanoscale. It has been reported that two-photon polymerization (TPP) is a suitable method for this. However, polymer structures fabricated by TPP often tend to shrink and to collapse during the fabrication process. In particular, delicate structures suffer from their insufficient mechanical stability against capillary forces which mainly arisein the fabrication process during the evaporation of the developer and rinsing liquids. Here, we report a modified development approach, which enables an additional UV-treatment to post cross-link created structures before they are dried. We tested our approach on nanopillar arrays and microscopic pillar structures mimicking the moth-eye and the gecko adhesives, respectively. Our results indicate a significant improvement of the me- chanical stability of the polymer structures, resulting in fewer defects and reduced shrinkage of the structures.

Loading...
Thumbnail Image
Item

Light emission intensities of luminescent Y2O3:Eu and Gd2O3:Eu particles of various sizes

2017, Adam, Jens, Metzger, Wilhelm, Koch, Marcus, Rogin, Peter, Coenen, Toon, Atchison, Jennifer S., König, Peter

There is great technological interest in elucidating the effect of particle size on the luminescence efficiency of doped rare earth oxides. This study demonstrates unambiguously that there is a size effect and that it is not dependent on the calcination temperature. The Y2O3:Eu and Gd2O3:Eu particles used in this study were synthesized using wet chemistry to produce particles ranging in size between 7 nm and 326 nm and a commercially available phosphor. These particles were characterized using three excitation methods: UV light at 250 nm wavelength, electron beam at 10 kV, and X-rays generated at 100 kV. Regardless of the excitation source, it was found that with increasing particle diameter there is an increase in emitted light. Furthermore, dense particles emit more light than porous particles. These results can be explained by considering the larger surface area to volume ratio of the smallest particles and increased internal surface area of the pores found in the large particles. For the small particles, the additional surface area hosts adsorbates that lead to non-radiative recombination, and in the porous particles, the pore walls can quench fluorescence. This trend is valid across calcination temperatures and is evident when comparing particles from the same calcination temperature.

Loading...
Thumbnail Image
Item

Funktionsschichten für flexible, kostengünstige CIGS-Dünnschichtsolarzellen, Akronym: FlexNet : Schlussbericht (öffentlicher Teil) des Verbundvorhabens

2010, Rogin, Peter

[no abstract available]