Search Results

Now showing 1 - 4 of 4
  • Item
    Simulating the effect of tillage practices with the global ecosystem model LPJmL (version 5.0-tillage)
    (Katlenburg-Lindau : Copernicus, 2019) Lutz, Femke; Herzfeld, Tobias; Heinke, Jens; Rolinski, Susanne; Schaphoff, Sibyll; von Bloh, Werner; Stoorvogel, Jetse J.; Müller, Christoph
    The effects of tillage on soil properties, crop productivity, and global greenhouse gas emissions have been discussed in the last decades. Global ecosystem models have limited capacity to simulate the various effects of tillage. With respect to the decomposition of soil organic matter, they either assume a constant increase due to tillage or they ignore the effects of tillage. Hence, they do not allow for analysing the effects of tillage and cannot evaluate, for example, reduced tillage or no tillage (referred to here as “no-till”) practises as mitigation practices for climate change. In this paper, we describe the implementation of tillage-related practices in the global ecosystem model LPJmL. The extended model is evaluated against reported differences between tillage and no-till management on several soil properties. To this end, simulation results are compared with published meta-analyses on tillage effects. In general, the model is able to reproduce observed tillage effects on global, as well as regional, patterns of carbon and water fluxes. However, modelled N fluxes deviate from the literature values and need further study. The addition of the tillage module to LPJmL5 opens up opportunities to assess the impact of agricultural soil management practices under different scenarios with implications for agricultural productivity, carbon sequestration, greenhouse gas emissions, and other environmental indicators.
  • Item
    The importance of management information and soil moisture representation for simulating tillage effects on N2O emissions in LPJmL5.0-tillage
    (Katlenburg-Lindau : Copernicus, 2020) Lutz, Femke; Del Grosso, Stephen; Ogle, Stephen; Williams, Stephen; Minoli, Sara; Rolinski, Susanne; Heinke, Jens; Stoorvogel, Jetse J.; Müller, Christoph
    No-tillage is often suggested as a strategy to reduce greenhouse gas emissions. Modeling tillage effects on nitrous oxide (N2O) emissions is challenging and subject to great uncertainties as the processes producing the emissions are complex and strongly nonlinear. Previous findings have shown deviations between the LPJmL5.0-tillage model (LPJmL: Lund–Potsdam–Jena managed Land) and results from meta-analysis on global estimates of tillage effects on N2O emissions. Here we tested LPJmL5.0-tillage at four different experimental sites across Europe and the USA to verify whether deviations in N2O emissions under different tillage regimes result from a lack of detailed information on agricultural management, the representation of soil water dynamics or both. Model results were compared to observational data and outputs from field-scale DayCent model simulations. DayCent has been successfully applied for the simulation of N2O emissions and provides a richer database for comparison than noncontinuous measurements at experimental sites. We found that adding information on agricultural management improved the simulation of tillage effects on N2O emissions in LPJmL. We also found that LPJmL overestimated N2O emissions and the effects of no-tillage on N2O emissions, whereas DayCent tended to underestimate the emissions of no-tillage treatments. LPJmL showed a general bias to overestimate soil moisture content. Modifications of hydraulic properties in LPJmL in order to match properties assumed in DayCent, as well as of the parameters related to residue cover, improved the overall simulation of soil water and N2O emissions simulated under tillage and no-tillage separately. However, the effects of no-tillage (shifting from tillage to no-tillage) did not improve. Advancing the current state of information on agricultural management and improvements in soil moisture highlights the potential to improve LPJmL5.0-tillage and global estimates of tillage effects on N2O emissions.
  • Item
    Modelling the role of livestock grazing in C and N cycling in grasslands with LPJmL5.0-grazing
    (Katlenburg-Lindau : Copernicus, 2023) Heinke, Jens; Rolinski, Susanne; Müller, Christoph
    To represent the impact of grazing livestock on carbon (C) and nitrogen (N) dynamics in grasslands, we implement a livestock module into LPJmL5.0-tillage, a global vegetation and crop model with explicit representation of managed grasslands and pastures, forming LPJmL5.0-grazing. The livestock module uses lactating dairy cows as a generic representation of grazing livestock. The new module explicitly accounts for forage quality in terms of dry-matter intake and digestibility using relationships derived from compositional analyses for different forages. Partitioning of N into milk, feces, and urine as simulated by the new livestock module shows very good agreement with observation-based relationships reported in the literature. Modelled C and N dynamics depend on forage quality (C:N ratios in grazed biomass), forage quantity, livestock densities, manure or fertilizer inputs, soil, atmospheric CO2 concentrations, and climate conditions. Due to the many interacting relationships, C sequestration, GHG emissions, N losses, and livestock productivity show substantial variation in space and across livestock densities. The improved LPJmL5.0-grazing model can now assess the effects of livestock grazing on C and N stocks and fluxes in grasslands. It can also provide insights about the spatio-temporal variability of grassland productivity and about the trade-offs between livestock production and environmental impacts.
  • Item
    Implementing the nitrogen cycle into the dynamic global vegetation, hydrology, and crop growth model LPJmL (version 5.0)
    (Katlenburg-Lindau : Copernicus, 2018) von Bloh, Werner; Schaphoff, Sibyll; Müller, Christoph; Rolinski, Susanne; Waha, Katharina; Zaehle, Sönke
    The well-established dynamical global vegetation, hydrology, and crop growth model LPJmL is extended with a terrestrial nitrogen cycle to account for nutrient limitations. In particular, processes of soil nitrogen dynamics, plant uptake, nitrogen allocation, response of photosynthesis and maintenance respiration to varying nitrogen concentrations in plant organs, and agricultural nitrogen management are included in the model. All new model features are described in full detail and the results of a global simulation of the historic past (1901-2009) are presented for evaluation of the model performance. We find that the implementation of nitrogen limitation significantly improves the simulation of global patterns of crop productivity. Regional differences in crop productivity, which had to be calibrated via a scaling of the maximum leaf area index, can now largely be reproduced by the model, except for regions where fertilizer inputs and climate conditions are not the yield-limiting factors. Furthermore, it can be shown that land use has a strong influence on nitrogen losses, increasing leaching by 93 %.