Search Results

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Item

Structure and superconducting characteristics of magnesium diboride, substitution of boron atoms by oxygen and carbon

2017, Prikhna, Tetiana, Romaka, Vitaliy, Eisterer, Michael, Shapovalov, Andrii, Kozyrev, Artem, Grechnev, Gennadiy, Boutko, Viktor, Goldacker, Wilfried, Habisreuther, Tobias, Vakaliuk, Oleksii, Halbedel, Bernd

An x-ray analysis of MgB2-based materials shows that they contain MgB2 and MgO phases. According to a quantitative Auger analysis (taken after removing the oxidized surface layer by Ar ion etching in the microscope chamber) the MgB2 phase contains some amount of oxygen that approximately corresponds to the composition MgB2.2-1.7O0.4-0.6. Rietveld refinement of the MgB2 phase, based on EDX data with varying B/O content, leads to the composition MgB1.68-1.8O0.2-0.32. Ab-initio modelling of boron substitution by oxygen in MgB2 (ΔH f = -150.6 meV/atom) shows that this is energetically favourable up to the composition MgB1.75O0.25 (ΔH f = -191.4 meV/atom). In contrast to carbon substitution, where very small levels of doping can dramatically affect the superconducting characteristics of the material with concomitant changes in the electron density, oxygen substitution results in very little change in the superconducting properties of MgB2. The formation of vacancies at the Mg site of both MgB2 and substituted MgB1.75O0.25 was modelled as well, but has shown that such processes are energetically disadvantageous (ΔHf of Mg0.875B2 and Mg0.75B1.75O0.25 are equal to -45.5 and -93.5 meV/atom, respectively).

Loading...
Thumbnail Image
Item

Combined structural analysis and cathodoluminescence investigations of single Pr3+-doped Ca2Nb3O10 nanosheets

2023, Changizi, Rasa, Zaefferer, Stefan, Ziegler, Christian, Romaka, Vitaliy, Lotsch, Bettina V., Scheu, Christina

Due to the novel properties of both 2D materials and rare-earth elements, developing 2D rare-earth nanomaterials has a growing interest in research. To produce the most efficient rare-earth nanosheets, it is essential to find out the correlation between chemical composition, atomic structure and luminescent properties of individual sheets. In this study, 2D nanosheets exfoliated from Pr3+-doped KCa2Nb3O10 particles with different Pr concentrations were investigated. Energy dispersive X-ray spectroscopy analysis indicates that the nanosheets contain Ca, Nb and O and a varying Pr content between 0.9 and 1.8 at%. K was completely removed after exfoliation. The crystal structure is monoclinic as in the bulk. The thinnest nanosheets are 3 nm corresponding to one triple perovskite-type layer with Nb on the B sites and Ca on the A sites, surrounded by charge compensating TBA+ molecules. Thicker nanosheets of 12 nm thickness (and above) were observed too by transmission electron microscopy with the same chemical composition. This indicates that several perovskite-type triple layers remain stacked similar to the bulk. Luminescent properties of individual 2D nanosheets were studied using a cathodoluminescence spectrometer revealing additional transitions in the visible region in comparison to the spectra of different bulk phases.