Search Results

Now showing 1 - 10 of 13
  • Item
    Crystal structure of bis{μ2-[(2-iminocyclopentylidene)methylidene]azanido-κ2 N:N'}bis[(η5-pentamethylcyclopentadienyl)zirconium(IV)] hexane monosolvate
    (Chester : International Union of Crystallography, 2015) Becker, Lisanne; Spannenberg, Anke; Arndt, Perdita; Rosenthal, Uwe
    The title compound, [Zr2(C10H15)4(C6H6N2)2]·C6H14, was obtained by the stoichiometric reaction of adipo­nitrile with [Zr(C10H15)2([eta]2-Me3SiC2SiMe3)]. Intra­molecular nitrile-nitrile couplings and deprotonation of the substrate produced the (1-imino-2-enimino)­cyclo­pentane ligand, which functions as a five-membered bridge between the two metal atoms. The ZrIV atom exhibits a distorted tetra­hedral coordination sphere defined by two penta­methyl­cyclo­penta­dienyl ligands, by the imino unit of one (1-imino-2-enimino)­cyclo­pentane and by the enimino unit of the second (1-imino-2-enimino)­cyclo­pentane. The cyclo­pentane ring of the ligand shows an envelope conformation. The asymmetric unit contains one half of the complex and one half of the hexane solvent mol­ecule, both being completed by the application of inversion symmetry. One of the penta­methyl­cyclo­penta­dienyl ligands is disordered over two sets of sites with a refined occupancy ratio of 0.8111 (3):0.189 (3). In the crystal, the complex mol­ecules are packed into rods extending along [100], with the solvent mol­ecules located in between. The rods are arranged in a distorted hexa­gonal packing.
  • Item
    Crystal structure of di-n-but­yl­bis­([eta]5-penta­methyl­cyclo­penta­dien­yl)hafnium(IV)
    (Chester : International Union of Crystallography, 2015) Arndt, Perdita; Schubert,Kathleen; Burlakov, Vladimir V.; Spannenberg, Anke; Rosenthal, Uwe
    The crystal structure of the title compound, [Hf(C10H15)2(C4H9)2], reveals two independent mol­ecules in the asymmetric unit. The diffraction experiment was performed with a racemically twinned crystal showing a 0.529 (5):0.471 (5) component ratio. Each HfIV atom is coordinated by two penta­methyl­cyclo­penta­dienyl and two n-butyl ligands in a distorted tetra­hedral geometry, with the cyclo­penta­dienyl rings inclined to one another by 45.11 (15) and 45.37 (16)°. In contrast to the isostructural di(n-butyl)bis([eta]5-penta­methyl­cyclo­penta­dien­yl)zirconium(IV) complex with a noticeable difference in the Zr-butyl bonding, the Hf-Cbut­yl bond lengths differ from each other by no more than 0.039 (3) Å.
  • Item
    Crystal structure of bis(η5-cyclopenta-dienyl)(2, 3-diethylbutane-1, 4-diyl)-hafnium(IV)
    (Chester : International Union of Crystallography, 2015) Burlakov, Vladimir V.; Baumann, Wolfgang; Arndt, Perdita; Spannenberg, Anke; Rosenthal, Uwe
    The title compound, [Hf(C5H5)2(C8H16)], proves a structural motif of hafna­cyclo­pentane besides the coordination of two cyclo­penta­dienyl ligands in an [eta]5-fashion. The hafna­cyclo­pentane ring has a twist conformation and is substituted by two ethyl groups in the [beta],[beta]'-positions, which are trans orientated to each other. One cyclo­penta­dienyl ring and one ethyl group are each disordered over two positions with site-occupancy ratios of 0.679 (15):0.321 (15) and 0.702 (18):0.298 (18), respectively.
  • Item
    Synthesis and crystallographic characterization of [2,2-bis­(η5-penta­methyl­cyclo­penta­dien­yl)-3,4-bis(tri­methyl­sil­yl)-2-zircona­furan-5-one-κO5]triisobutyl­aluminium
    (Chester : International Union of Crystallography, 2018-3-27) Burlakov, Vladimir V.; Bogdanov, Vyacheslav S.; Arndt, Perdita; Spannenberg, Anke; Rosenthal, Uwe; Beweries, Torsten; Shur, Vladimir B.
    The crystal structure of the title zwitterionic zirconocene complex containing a furan­one unit, [AlZr(C10H15)2(C4H9)3(C9H18O2Si2)], is reported. On reacting a zircona­furan­one with two equivalents of HAl(i-Bu)2, disproportionation of the Lewis acid results in the formation of a triiso­butyl­aluminium fragment, Al(i-Bu)3, which coordinates to the exocyclic carbonyl O atom of the zircona­furan­one ring. Single-crystal X-ray diffraction reveals that the zircona­furan­one ring remains intact with coordination of the aluminium to the exocyclic O atom. One of the i-butyl groups is disordered over two sets of sites, with an occupancy ratio of 0.731 (3):0.269 (3).
  • Item
    Crystal structure of bis(η5-cyclopenta-dienyl)(1,4-di-tert-butylbuta-1-en-3-yn-1-yl) zirconium(IV) μ2-hydroxido-bis[tris-(pentafluorophenyl) borate]
    (Chester : International Union of Crystallography, 2015) Burlakov, Vladimir V.; Spannenberg, Anke; Arndt, Perdita; Rosenthal, Uwe
    Alkyl zirconocene cations have been of considerable inter­est as reactive species in many polymerization processes. In the crystal structure of the title compound, [Zr(C12H19)(C5H5)2](C36HB2F30O), the [Zr(C5H5)2((t-Bu)C=C(H)-C2(t-Bu))]+ cation displays a buta-1-en-3-yne ligand side-on coordinated to a typical bent zirconocene [centroid(cp)-Zr-centroid(cp) = 131.4 (3)°, Zr-C(buta-1-en-3-yne) = 2.255 (3), 2.597 (3) and 2.452 (2) Å]. In the [HO(B(C6F5)3)2]- anion, intra­molecular O-H...F hydrogen bonds are observed. One tert-butyl group in the complex cation is disordered over two sets of sites with occupancies 0.701(4):0.299(4).
  • Item
    PNPN-H in Comparison to other PNP, PNPN and NPNPN Ligands for the Chromium Catalyzed Selective Ethylene Oligomerization
    (Weinheim : Wiley-VCH Verlag, 2019) Rosenthal, Uwe
    Many examples exist for the chromium catalyzed selective ethylene oligomerization in which the influence of ligands is essential for the formation of products. Regarding the tri- and tetramerization to 1-hexene or 1-octene mostly PNP ligands are responsible for the tetra- and some of such modified ligands for the trimerization. A very special case in these reactions are PNPN−H ligands, showing in most cases highly selective trimerization of ethylene to 1-hexene. In this review all existing published information about these PNPN−H ligands is accumulated and compared to some other related PNP, PNPN and NPNPN ligands in the chromium catalyzed selective ethylene oligomerization with respect to the switch from tetra- to trimerization and back by different substituent pattern of PNP ligand. Mechanistic information and arguments are collected to explain the switch from tetra- to trimerization and back by substitution of functional groups in classical PNP to PNPN−H ligands as a result of mono- and dinuclear catalytic species. © 2019 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
  • Item
    Tetra­carbonyl-2κ4C-[μ-5-methyl-1,1,3-triphenyl-2-(propan-2-yl)-2,4-di­aza-1,3-diphosphahexan-4-ido-1κN4:2κP1,P3](N,N,N′,N′-tetra­methyl­ethane-1,2-di­amine-1κ2N,N′)lithiummolybdenum
    (Chester : IUCr, 2018) Höhne, Martha; Spannenberg, Anke; Müller, Bernd H.; Peulecke, Normen; Rosenthal, Uwe
    The title complex, [LiMo(C6H16N2)(C24H29N2P2)(CO)4], contains a distorted octa­hedrally coordinated molybdenum centre bearing a li­thia­ted P,P′-cis-chelating PNPN ligand, which results in a nearly planar four-membered metallacycle. The Li atom is coordinated by one equivalent tetra­methyl­ethylenedi­amine. In the crystal, mol­ecules are linked via weak C—H...O inter­actions, forming a chain along the b-axis direction.
  • Item
    Tetra­carbon­yl[N-(di­phenyl­phosphanyl-κP)-N,N′-diisoprop­yl-P-phenyl­phospho­rus di­amide-κP]molybdenum(0) with an unknown solvent
    (Chester : IUCr, 2018) Höhne, Martha; Gongoll, Marc; Spannenberg, Anke; Müller, Bernd H.; Peulecke, Normen; Rosenthal, Uwe
    The title complex, [Mo(C24H30N2P2)(CO)4], contains a molybdenum centre bearing a P,P′-cis-chelating Ph2PN(iPr)P(Ph)NH(iPr) and four carbonyl ligands in a distorted octa­hedral coordination geometry. This results in a nearly planar four-membered metallacycle. In the crystal, mol­ecules are linked by N—H...O and C—H...O hydrogen bonds to form layers parallel to the ac plane. For the final refinement, the contributions of disordered solvent mol­ecules were removed from the diffraction data with SQUEEZE in PLATON [Spek (2015). Acta Cryst. C71, 9–18]. The given chemical formula and other crystal data do not take into account the unknown solvent mol­ecule(s).
  • Item
    1,1-Bis(di­phenyl­phosphor­yl)hydrazine
    (Chester : International Union of Crystallography, 2018) Höhne, Martha; Aluri, Bhaskar R.; Spannenberg, Anke; Müller, Bernd H.; Peulecke, Normen; Rosenthal, Uwe
    The title compound, C24H22N2O2P2, contains a diphosphazane backbone, as well as a hydrazine entity. The P—N—P diphosphazane unit and the N-amine N atom are almost coplanar, and the O atoms of the Ph2P(O) units are oriented trans to each other with respect to the P...P axis. In the crystal, centrosymmetrically related mol­ecules are linked into dimers by pairs of N—H...O hydrogen bonds, forming rings of graph-set motif R22(10).
  • Item
    Di-μ-chlorido-bis­­({4-[bis­(tri­methylsilyl)amino]-6-chloro-2,2,8,8-tetra­methyl-5,7-bis­(tri­methylsilyl)-3,5,7-tri­aza-4,6-diphospha-2,8-disilanon-3-en-4-ido-κ2P,P′}palladium(II)) di­ethyl ether disolvate
    (Chester : International Union of Crystallography, 2016) Höhne, Martha; Müller, Bernd H.; Spannenberg, Anke; Rosenthal, Uwe
    The title compound, [Pd2(C18H54Cl2N4P2Si6)2Cl2]·2C4H10O, features a dinuclear chloride-bridged palladium complex bearing two equivalents of the novel monoanionic mixed valent (λ3-P)—N—(λ5-P) ligand. A metal catalyzed coupling of two amino­imino­phosphines and a shift of one chlorine from the metal to the phospho­rus results in the (λ3-P)—N—(λ5-P) ligand. The mol­ecule contains a planar bimetallic Pd2Cl2 core with a crystallographic centre of inversion at the mid-point of the Pd⋯Pd line. The Pd atoms are in a distorted square-planar arrangement, where the P/Pd/P and Cl/Pd/Cl planes are twisted with respect to each other by a dihedral angle of 7.57 (4)°. The P—Pd—P bite angle is 71.380 (18)°. Intra­molecular C—H⋯Cl inter­actions are observed. In the crystal, the diethyl ether solvent mol­ecule is disordered over two sites, with an occupancy ratio of 0.788 (5):0.212 (5).