Search Results

Now showing 1 - 6 of 6
Loading...
Thumbnail Image
Item

Photoelectron holography in strong optical and dc electric fields

2014, Stodolna, A., Huismans, Y., Rouzée, A., Lépine, F., Vrakking, M.J.J.

The application of velocity map imaging for the detection of photoelectrons resulting from atomic or molecular ionization allows the observation of interferometric, and in some cases holographic structures that contain detailed information on the target from which the photoelecrons are extracted. In this contribution we present three recent examples of the use of photoelectron velocity map imaging in experiments where atoms are exposed to strong optical and dc electric fields. We discuss (i) observations of the nodal structure of Stark states of hydrogen measured in a dc electric field, (ii) mid-infrared strong-field ionization of metastable Xe atoms and (iii) the reconstruction of helium electronic wavepackets in an attosecond pump-probe experiment. In each case, the interference between direct and indirect electron pathways, reminiscent of the reference and signal waves in holography, is seen to play an important role.

Loading...
Thumbnail Image
Item

Observation of correlated electronic decay in expanding clusters triggered by near-infrared fields

2015, Schütte, B., Arbeiter, M., Fennel, T., Jabbari, G., Kuleff, A.I., Vrakking, M.J.J., Rouzée, A.

When an excited atom is embedded into an environment, novel relaxation pathways can emerge that are absent for isolated atoms. A well-known example is interatomic Coulombic decay, where an excited atom relaxes by transferring its excess energy to another atom in the environment, leading to its ionization. Such processes have been observed in clusters ionized by extreme-ultraviolet and X-ray lasers. Here, we report on a correlated electronic decay process that occurs following nanoplasma formation and Rydberg atom generation in the ionization of clusters by intense, non-resonant infrared laser fields. Relaxation of the Rydberg states and transfer of the available electronic energy to adjacent electrons in Rydberg states or quasifree electrons in the expanding nanoplasma leaves a distinct signature in the electron kinetic energy spectrum. These so far unobserved electron-correlation-driven energy transfer processes may play a significant role in the response of any nano-scale system to intense laser light.

Loading...
Thumbnail Image
Item

Coulomb explosion of diatomic molecules in intense XUV fields mapped by partial covariance

2013, Kornilov, O., Eckstein, M., Rosenblatt, M., Schulz, C.P., Motomura, K., Rouzée, A., Klei, J., Foucar, L., Siano, M., Lübcke, A., Schapper, F., Johnsson, P., Holland, D.M.P., Schlathölter, T., Marchenko, T., Düsterer, S., Ueda, K., Vrakking, M.J.J., Frasinski, L.J.

Single-shot time-of-flight spectra for Coulomb explosion of N2 and I2 molecules have been recorded at the Free Electron LASer in Hamburg (FLASH) and have been analysed using a partial covariance mapping technique. The partial covariance analysis unravels a detailed picture of all significant Coulomb explosion pathways, extending up to the N 4+-N5+ channel for nitrogen and up to the I 8+-I9+ channel for iodine. The observation of the latter channel is unexpected if only sequential ionization processes from the ground state ions are considered. The maximum kinetic energy release extracted from the covariance maps for each dissociation channel shows that Coulomb explosion of nitrogen molecules proceeds much faster than that of the iodine. The N 2 ionization dynamics is modelled using classical trajectory simulations in good agreement with the outcome of the experiments. The results suggest that covariance mapping of the Coulomb explosion can be used to measure the intensity and pulse duration of free-electron lasers.

Loading...
Thumbnail Image
Item

Coherent wave packet dynamics in photo-excited Nal

2013, Leitner, T., Buchner, F., Luebcke, A., Rouzée, A., Rading, L., Johnsson, P., Odelius, M., Karlsson, H.O., Vrakking, M., Wernet, P.

Time and energy resolved photoelectron distributions of photo-excited Nal are presented. A splitting in the photo-excited state suggested by calculations of the intramolecular potential energy surfaces could be confirmed experimentally for the first time.

Loading...
Thumbnail Image
Item

XUV excitation followed by ultrafast non-adiabatic relaxation in PAH molecules as a femto-astrochemistry experiment

2015, Marciniak, A., Despré, V., Barillot, T., Rouzée, A., Galbraith, M.C.E., Klei, J., Yang, C.-H., Smeenk, C.T.L., Loriot, V., Nagaprasad Reddy, S., Tielens, A.G.G.M., Mahapatra, S., Kuleff, A.I., Vrakking, M.J.J., Lépine, F.

Highly excited molecular species are at play in the chemistry of interstellar media and are involved in the creation of radiation damage in a biological tissue. Recently developed ultrashort extreme ultraviolet light sources offer the high excitation energies and ultrafast time-resolution required for probing the dynamics of highly excited molecular states on femtosecond (fs) (1 fs=10−15s) and even attosecond (as) (1 as=10−18 s) timescales. Here we show that polycyclic aromatic hydrocarbons (PAHs) undergo ultrafast relaxation on a few tens of femtoseconds timescales, involving an interplay between the electronic and vibrational degrees of freedom. Our work reveals a general property of excited radical PAHs that can help to elucidate the assignment of diffuse interstellar absorption bands in astrochemistry, and provides a benchmark for the manner in which coupled electronic and nuclear dynamics determines reaction pathways in large molecules following extreme ultraviolet excitation.

Loading...
Thumbnail Image
Item

Imaging molecular structure through femtosecond photoelectron diffraction on aligned and oriented gas-phase molecules

2014, Boll, R., Rouzée, A., Adolph, M., Anielski, D., Aquila, A., Bari, S., Bomme, C., Bostedt, C., Bozek, J.D., Chapman, H.N., Christensen, L., Coffee, R., Coppola, N., De, S., Decleva, P., Epp, S.W., Erk, B., Filsinger, F., Foucar, L., Gorkhover, T., Gumprecht, L., Hömke, A., Holmegaard, L., Johnsson, P., Kienitz, J.S., Kierspel, T., Krasniqi, F., Kühnel, K.-U., Maurer, J., Messerschmidt, M., Moshammer, R., Müller, N.L.M., Rudek, B., Savelyev, E., Schlichting, I., Schmidt, C., Scholz, F., Schorb, S., Schulz, J., Seltmann, J., Stener, M., Stern, S., Techert, S., Thøgersen, J., Trippel, S., Viefhaus, J., Vrakking, M., Stapelfeldt, H., Küpper, J., Ullrich, J., Rudenko, A., Rolles, D.

This paper gives an account of our progress towards performing femtosecond time-resolved photoelectron diffraction on gas-phase molecules in a pump-probe setup combining optical lasers and an X-ray free-electron laser. We present results of two experiments aimed at measuring photoelectron angular distributions of laser-aligned 1-ethynyl-4-fluorobenzene (C8H5F) and dissociating, laser-aligned 1,4-dibromobenzene (C6H4Br2) molecules and discuss them in the larger context of photoelectron diffraction on gas-phase molecules. We also show how the strong nanosecond laser pulse used for adiabatically laser-aligning the molecules influences the measured electron and ion spectra and angular distributions, and discuss how this may affect the outcome of future time-resolved photoelectron diffraction experiments.