Search Results

Now showing 1 - 4 of 4
  • Item
    Mechanism of Bi−Ni Phase Formation in a Microwave-Assisted Polyol Process
    (Weinheim : Wiley-VCH, 2019) Smuda, Matthias; Damm, Christine; Ruck, Michael; Doert, Thomas
    Typically, intermetallic phases are obtained in solid-state reactions or crystallization from melts, which are highly energy and time consuming. The polyol process takes advantage of low temperatures and short reaction times using easily obtainable starting materials. The formation mechanism of these intermetallic particles has received little attention so far, even though a deeper understanding should allow for better synthesis planning. In this study, we therefore investigated the formation of BiNi particles in ethylene glycol in a microwave-assisted polyol process mechanistically. The coordination behavior in solution was analyzed using HPLC-MS and UV-Vis. Tracking the reaction with PXRD measurements, FT-IR spectroscopy and HR-TEM revealed a successive reduction of Bi3+ and Ni2+, leading to novel spherical core-shell structure in a first reaction step. Bismuth particles are encased in a matrix of nickel nanoparticles of 2 nm to 6 nm in diameter and oxidation products of ethylene glycol. Step-wise diffusion of nickel into the bismuth particle intermediately results in the bismuth-rich compound Bi3Ni, which consecutively transforms into the BiNi phase as the reaction progresses. The impacts of the anion type, temperature and pH value were also investigated. © 2020 The Authors. Published by Wiley-VCH GmbH
  • Item
    The Weak 3D Topological Insulator Bi12Rh3Sn3I9
    (Weinheim : Wiley-VCH, 2020) Lê Anh, Mai; Kaiser, Martin; Ghimire, Madhav Prasad; Richter, Manuel; Koepernik, Klaus; Gruschwitz, Markus; Tegenkamp, Christoph; Doert, Thomas; Ruck, Michael
    Topological insulators (TIs) gained high interest due to their protected electronic surface states that allow dissipation-free electron and information transport. In consequence, TIs are recommended as materials for spintronics and quantum computing. Yet, the number of well-characterized TIs is rather limited. To contribute to this field of research, we focused on new bismuth-based subiodides and recently succeeded in synthesizing a new compound Bi12Rh3Sn3I9, which is structurally closely related to Bi14Rh3I9 – a stable, layered material. In fact, Bi14Rh3I9 is the first experimentally supported weak 3D TI. Both structures are composed of well-defined intermetallic layers of ∞2[(Bi4Rh)3I]2+ with topologically protected electronic edge-states. The fundamental difference between Bi14Rh3I9 and Bi12Rh3Sn3I9 lies in the composition and the arrangement of the anionic spacer. While the intermetallic 2D TI layers in Bi14Rh3I9 are isolated by ∞1[Bi2I8]2− chains, the isoelectronic substitution of bismuth(III) with tin(II) leads to ∞2[Sn3I8]2− layers as anionic spacers. First transport experiments support the 2D character of this material class and revealed metallic conductivity. © 2020 The Authors. Published by Wiley-VCH GmbH
  • Item
    Strong and Weak 3D Topological Insulators Probed by Surface Science Methods
    (Weinheim : Wiley-VCH, 2020) Morgenstern, Markus; Pauly, Christian; Kellner, Jens; Liebmann, Marcus; Pratzer, Marco; Eschbach, Markus; Plucinski, Lukacz; Otto, Sebastian; Rasche, Bertold; Ruck, Michael; Richter, Manuel; Just, Sven; Lüpke, Felix; Voigtländer, Bert
    The contributions of surface science methods to discover and improve 3D topological insulator materials are reviewed herein, illustrated with examples from the authors’ own work. In particular, it is demonstrated that spin-polarized angular-resolved photoelectron spectroscopy is instrumental to evidence the spin-helical surface Dirac cone, to tune its Dirac point energy toward the Fermi level, and to discover novel types of topological insulators such as dual ones or switchable ones in phase change materials. Moreover, procedures are introduced to spatially map potential fluctuations by scanning tunneling spectroscopy and to identify topological edge states in weak topological insulators. © 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
  • Item
    Freestanding Nanolayers of a Wide-Gap Topological Insulator through Liquid-Phase Exfoliation
    (Weinheim : Wiley-VCH, 2021) Lê Anh, Mai; Potapov, Pavel; Wolf, Daniel; Lubk, Axel; Glatz, Bernhard; Fery, Andreas; Doert, Thomas; Ruck, Michael
    The layered salt Bi14Rh3I9 is a weak three-dimensional (3D) topological insulator (TI), that is, a stack of two-dimensional (2D) TIs. It has a wide non-trivial band gap of 210 meV, which is generated by strong spin-orbit coupling, and possesses protected electronic edge-states. In the structure, charged layers of (Formula presented.) (Bi4Rh)3I]2+ honeycombs and (Formula presented.) Bi2I8]2− chains alternate. The non-trivial topology of Bi14Rh3I9 is an inherent property of the 2D intermetallic fragment. Here, the exfoliation of Bi14Rh3I9 was performed using two different chemical approaches: (a) through a reaction with n-butyllithium and poly(vinylpyrrolidone), (b) through a reaction with betaine in dimethylformamide at 55 °C. The former yielded few-layer sheets of the new compound Bi12Rh3I, while the latter led to crystalline sheets of Bi14Rh3I9 with a thickness down to 5 nm and edge-lengths up to several ten microns. X-ray diffraction and electron microscopy proved that the structure of Bi14Rh3I9 remained intact. Thus, it was assumed that the particles are still TIs. Dispersions of these flakes now allow for next steps towards the envisioned applications in nanoelectronics, such as the study of quantum coherence in deposited films, the combination with superconducting particles or films for the generation of Majorana fermions, or studies on their behavior under the influence of magnetic or electric fields or in contact with various materials occurring in devices. The method presented generally allows to exfoliate layers with high specific charges and thus the use of layered starting materials beyond van der Waals crystals. © 2020 The Authors. Chemistry - A European Journal published by Wiley-VCH GmbH