Search Results

Now showing 1 - 8 of 8
  • Item
    Mechanism of Bi−Ni Phase Formation in a Microwave-Assisted Polyol Process
    (Weinheim : Wiley-VCH, 2019) Smuda, Matthias; Damm, Christine; Ruck, Michael; Doert, Thomas
    Typically, intermetallic phases are obtained in solid-state reactions or crystallization from melts, which are highly energy and time consuming. The polyol process takes advantage of low temperatures and short reaction times using easily obtainable starting materials. The formation mechanism of these intermetallic particles has received little attention so far, even though a deeper understanding should allow for better synthesis planning. In this study, we therefore investigated the formation of BiNi particles in ethylene glycol in a microwave-assisted polyol process mechanistically. The coordination behavior in solution was analyzed using HPLC-MS and UV-Vis. Tracking the reaction with PXRD measurements, FT-IR spectroscopy and HR-TEM revealed a successive reduction of Bi3+ and Ni2+, leading to novel spherical core-shell structure in a first reaction step. Bismuth particles are encased in a matrix of nickel nanoparticles of 2 nm to 6 nm in diameter and oxidation products of ethylene glycol. Step-wise diffusion of nickel into the bismuth particle intermediately results in the bismuth-rich compound Bi3Ni, which consecutively transforms into the BiNi phase as the reaction progresses. The impacts of the anion type, temperature and pH value were also investigated. © 2020 The Authors. Published by Wiley-VCH GmbH
  • Item
    The Weak 3D Topological Insulator Bi12Rh3Sn3I9
    (Weinheim : Wiley-VCH, 2020) Lê Anh, Mai; Kaiser, Martin; Ghimire, Madhav Prasad; Richter, Manuel; Koepernik, Klaus; Gruschwitz, Markus; Tegenkamp, Christoph; Doert, Thomas; Ruck, Michael
    Topological insulators (TIs) gained high interest due to their protected electronic surface states that allow dissipation-free electron and information transport. In consequence, TIs are recommended as materials for spintronics and quantum computing. Yet, the number of well-characterized TIs is rather limited. To contribute to this field of research, we focused on new bismuth-based subiodides and recently succeeded in synthesizing a new compound Bi12Rh3Sn3I9, which is structurally closely related to Bi14Rh3I9 – a stable, layered material. In fact, Bi14Rh3I9 is the first experimentally supported weak 3D TI. Both structures are composed of well-defined intermetallic layers of ∞2[(Bi4Rh)3I]2+ with topologically protected electronic edge-states. The fundamental difference between Bi14Rh3I9 and Bi12Rh3Sn3I9 lies in the composition and the arrangement of the anionic spacer. While the intermetallic 2D TI layers in Bi14Rh3I9 are isolated by ∞1[Bi2I8]2− chains, the isoelectronic substitution of bismuth(III) with tin(II) leads to ∞2[Sn3I8]2− layers as anionic spacers. First transport experiments support the 2D character of this material class and revealed metallic conductivity. © 2020 The Authors. Published by Wiley-VCH GmbH
  • Item
    Layered manganese bismuth tellurides with GeBi4Te7- and GeBi6Te10-type structures: Towards multifunctional materials
    (London : RSC Publ., 2019) Souchay, Daniel; Nentwig, Markus; Günther, Daniel; Keilholz, Simon; de Boor, Johannes; Zeugner, Alexander; Isaeva, Anna; Ruck, Michael; Wolter, Anja U.B.; Büchnerde, Bernd; Oeckler, Oliver
    The crystal structures of new layered manganese bismuth tellurides with the compositions Mn0.85(3)Bi4.10(2)Te7 and Mn0.73(4)Bi6.18(2)Te10 were determined by single-crystal X-ray diffraction, including the use of microfocused synchrotron radiation. These analyses reveal that the layered structures deviate from the idealized stoichiometry of the 12P-GeBi4Te7 (space group P3m1) and 51R-GeBi6Te10 (space group R3m) structure types they adopt. Modified compositions Mn1-xBi4+2x/3Te7 (x = 0.15-0.2) and Mn1-xBi6+2x/3Te10 (x = 0.19-0.26) assume cation vacancies and lead to homogenous bulk samples as confirmed by Rietveld refinements. Electron diffraction patterns exhibit no diffuse streaks that would indicate stacking disorder. The alternating quintuple-layer [M2Te3] and septuple-layer [M3Te4] slabs (M = mixed occupied by Bi and Mn) with 1 : 1 sequence (12P stacking) in Mn0.85Bi4.10Te7 and 2 : 1 sequence (51R stacking) in Mn0.81Bi6.13Te10 were also observed in HRTEM images. Temperature-dependent powder diffraction and differential scanning calorimetry show that the compounds are high-temperature phases, which are metastable at ambient temperature. Magnetization measurements are in accordance with a MnII oxidation state and point at predominantly ferromagnetic coupling in both compounds. The thermoelectric figures of merit of n-type conducting Mn0.85Bi4.10Te7 and Mn0.81Bi6.13Te10 reach zT = 0.25 at 375 °C and zT = 0.28 at 325 °C, respectively. Although the compounds are metastable, compact ingots exhibit still up to 80% of the main phases after thermoelectric measurements up to 400 °C. © The Royal Society of Chemistry 2019.
  • Item
    Strong and Weak 3D Topological Insulators Probed by Surface Science Methods
    (Weinheim : Wiley-VCH, 2020) Morgenstern, Markus; Pauly, Christian; Kellner, Jens; Liebmann, Marcus; Pratzer, Marco; Eschbach, Markus; Plucinski, Lukacz; Otto, Sebastian; Rasche, Bertold; Ruck, Michael; Richter, Manuel; Just, Sven; Lüpke, Felix; Voigtländer, Bert
    The contributions of surface science methods to discover and improve 3D topological insulator materials are reviewed herein, illustrated with examples from the authors’ own work. In particular, it is demonstrated that spin-polarized angular-resolved photoelectron spectroscopy is instrumental to evidence the spin-helical surface Dirac cone, to tune its Dirac point energy toward the Fermi level, and to discover novel types of topological insulators such as dual ones or switchable ones in phase change materials. Moreover, procedures are introduced to spatially map potential fluctuations by scanning tunneling spectroscopy and to identify topological edge states in weak topological insulators. © 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
  • Item
    Influence of chemical interactions on the electronic properties of BiOI/organic semiconductor heterojunctions for application in solution-processed electronics
    (London [u.a.] : RSC, 2023) Lapalikar, Vaidehi; Dacha, Preetam; Hambsch, Mike; Hofstetter, Yvonne J.; Vaynzof, Yana; Mannsfeld, Stefan C. B.; Ruck, Michael
    Bismuth oxide iodide (BiOI) has been viewed as a suitable environmentally-friendly alternative to lead-halide perovskites for low-cost (opto-)electronic applications such as photodetectors, phototransistors and sensors. To enable its incorporation in these devices in a convenient, scalable, and economical way, BiOI thin films were investigated as part of heterojunctions with various p-type organic semiconductors (OSCs) and tested in a field-effect transistor (FET) configuration. The hybrid heterojunctions, which combine the respective functionalities of BiOI and the OSCs were processed from solution under ambient atmosphere. The characteristics of each of these hybrid systems were correlated with the physical and chemical properties of the respective materials using a concept based on heteropolar chemical interactions at the interface. Systems suitable for application in lateral transport devices were identified and it was demonstrated how materials in the hybrids interact to provide improved and synergistic properties. These indentified heterojunction FETs are a first instance of successful incorporation of solution-processed BiOI thin films in a three-terminal device. They show a significant threshold voltage shift and retained carrier mobility compared to pristine OSC devices and open up possibilities for future optoelectronic applications.
  • Item
    Freestanding Nanolayers of a Wide-Gap Topological Insulator through Liquid-Phase Exfoliation
    (Weinheim : Wiley-VCH, 2021) Lê Anh, Mai; Potapov, Pavel; Wolf, Daniel; Lubk, Axel; Glatz, Bernhard; Fery, Andreas; Doert, Thomas; Ruck, Michael
    The layered salt Bi14Rh3I9 is a weak three-dimensional (3D) topological insulator (TI), that is, a stack of two-dimensional (2D) TIs. It has a wide non-trivial band gap of 210 meV, which is generated by strong spin-orbit coupling, and possesses protected electronic edge-states. In the structure, charged layers of (Formula presented.) (Bi4Rh)3I]2+ honeycombs and (Formula presented.) Bi2I8]2− chains alternate. The non-trivial topology of Bi14Rh3I9 is an inherent property of the 2D intermetallic fragment. Here, the exfoliation of Bi14Rh3I9 was performed using two different chemical approaches: (a) through a reaction with n-butyllithium and poly(vinylpyrrolidone), (b) through a reaction with betaine in dimethylformamide at 55 °C. The former yielded few-layer sheets of the new compound Bi12Rh3I, while the latter led to crystalline sheets of Bi14Rh3I9 with a thickness down to 5 nm and edge-lengths up to several ten microns. X-ray diffraction and electron microscopy proved that the structure of Bi14Rh3I9 remained intact. Thus, it was assumed that the particles are still TIs. Dispersions of these flakes now allow for next steps towards the envisioned applications in nanoelectronics, such as the study of quantum coherence in deposited films, the combination with superconducting particles or films for the generation of Majorana fermions, or studies on their behavior under the influence of magnetic or electric fields or in contact with various materials occurring in devices. The method presented generally allows to exfoliate layers with high specific charges and thus the use of layered starting materials beyond van der Waals crystals. © 2020 The Authors. Chemistry - A European Journal published by Wiley-VCH GmbH
  • Item
    Freestanding few-layer sheets of a dual topological insulator
    (London : Nature Publishing Group, 2021) Anh, Mai Lê; Potapov, Pavel; Lubk, Axel; Doert, Thomas; Ruck, Michael
    The emergence of topological insulators (TIs) raised high expectations for their application in quantum computers and spintronics. Being bulk semiconductors, their nontrivial topology at the electronic bandgap enables dissipation-free charge and spin transport in protected metallic surface states. For application, crystalline thin films are requested in sufficient quantity. A suitable approach is the liquid phase exfoliation (LPE) of TI crystals that have layered structures. Bi2TeI is a weak 3D TI, which leads to protected edge states at the side facets of a crystal, as well as a topological crystalline insulator, which is responsible for protected states at the top and bottom faces. We developed an effective, scalable protocol for LPE of freestanding nanoflakes from Bi2TeI crystals. By heat treatment and sonication in isopropyl alcohol and poly(vinylpyrrolidone), crystalline Bi2TeI sheets with a thickness of ~50 nm were obtained and can therefore be considered for further processing toward microelectronic applications.
  • Item
    Correlation between topological band character and chemical bonding in a Bi14Rh3I9-based family of insulators
    (London : Nature Publishing Group, 2016) Rasche, Bertold; Isaeva, Anna; Ruck, Michael; Koepernik, Klaus; Richter, Manuel; van den Brink, Jeroen
    Recently the presence of topologically protected edge-states in Bi14Rh3I9 was confirmed by scanning tunnelling microscopy consolidating this compound as a weak 3D topological insulator (TI). Here, we present a density-functional-theory-based study on a family of TIs derived from the Bi14Rh3I9 parent structure via substitution of Ru, Pd, Os, Ir and Pt for Rh. Comparative analysis of the band-structures throughout the entire series is done by means of a unified minimalistic tight-binding model that evinces strong similarity between the quantum-spin-Hall (QSH) layer in Bi14Rh3I9 and graphene in terms of -molecular orbitals. Topologically non-trivial energy gaps are found for the Ir-, Rh-, Pt- and Pd-based systems, whereas the Os- and Ru-systems remain trivial. Furthermore, the energy position of the metal -band centre is identified as the parameter which governs the evolution of the topological character of the band structure through the whole family of TIs. The -band position is shown to correlate with the chemical bonding within the QSH layers, thus revealing how the chemical nature of the constituents affects the topological band character.