Search Results

Now showing 1 - 2 of 2
  • Item
    A New Family of Layered Metal-Organic Semiconductors: Cu/V-Organophosphonates
    (Weinheim : Wiley-VCH, 2023) Tholen, Patrik; Wagner, Lukas; Ruthes, Jean G. A.; Siemensmeyer, Konrad; Beglau, Thi Hai Yen; Muth, Dominik; Zorlu, Yunus; Okutan, Mustafa; Goldschmidt, Jan Christoph; Janiak, Christoph; Presser, Volker; Yavuzçetin, Özgür; Yücesan, Gündoğ
    Herein, we report the design and synthesis of a layered redox-active, antiferromagnetic metal organic semiconductor crystals with the chemical formula [Cu(H2O)2V(µ-O)(PPA)2] (where PPA is phenylphosphonate). The crystal structure of [Cu(H2O)2V(µ-O)(PPA)2] shows that the metal phosphonate layers are separated by phenyl groups of the phenyl phosphonate linker. Tauc plotting of diffuse reflectance spectra indicates that [Cu(H2O)2V(µ-O)(PPA)2] has an indirect band gap of 2.19 eV. Photoluminescence (PL) spectra indicate a complex landscape of energy states with PL peaks at 1.8 and 2.2 eV. [Cu(H2O)2V(µ-O)(PPA)2] has estimated hybrid ionic and electronic conductivity values between 0.13 and 0.6 S m−1. Temperature-dependent magnetization measurements show that [Cu(H2O)2V(µ-O)(PPA)2] exhibits short range antiferromagnetic order between Cu(II) and V(IV) ions. [Cu(H2O)2V(µ-O)(PPA)2] is also photoluminescent with photoluminescence quantum yield of 0.02%. [Cu(H2O)2V(µ-O)(PPA)2] shows high electrochemical, and thermal stability.
  • Item
    Hydrogel-Based Flexible Energy Storage Using Electrodes Based on Polypyrrole and Carbon Threads
    (Weinheim : Wiley-VCH, 2023) Ruthes, Jean G. A.; Deller, Andrei E.; Pameté, Emmanuel; Riegel‐Vidotti, Izabel C.; Presser, Volker; Vidotti, Marcio
    Developing new flexible and electroactive materials is a significant challenge to producing safe, reliable, and environmentally friendly energy storage devices. This study introduces a promising electrolyte system that fulfills these requirements. First, polypyrrole (PPy) nanotubes are electropolymerized in graphite-thread electrodes using methyl orange (MO) templates in an acidic medium. The modification increases the conductivity and does not compromise the flexibility of the electrodes. Next, flexible supercapacitors are built using hydrogel prepared from poly(vinyl alcohol) (PVA)/sodium alginate (SA) obtained by freeze–thawing and swollen with ionic solutions as an electrolyte. The material exhibits a homogenous and porous hydrogel matrix allowing a high conductivity of 3.6 mS cm−1 as-prepared while displaying great versatility, changing its electrochemical and mechanical properties depending on the swollen electrolyte. Therefore, it allows its combination with modified graphite-thread electrodes into a quasi-solid electrochemical energy storage device, achieving a specific capacitance (Cs) value of 66 F g−1 at 0.5 A g−1. Finally, the flexible device exhibits specific energy and power values of 19.9 W kg−1 and 3.0 Wh kg−1, relying on the liquid phase in the hydrogel matrix produced from biodegradable polymers. This study shows an environment friendly, flexible, and tunable quasi-solid electrolyte, depending on a simple swell experiment to shape its properties according to its application.