Search Results

Now showing 1 - 3 of 3
  • Item
    (Metallo)porphyrins for potential materials science applications
    (Frankfurt, M. : Beilstein-Institut zur Förderung der Chemischen Wissenschaften, 2017-8-29) Smykalla, Lars; Mende, Carola; Fronk, Michael; Siles, Pablo F.; Hietschold, Michael; Salvan, Georgeta; Zahn, Dietrich R.T.; Schmidt, Oliver G.; Rüffer, Tobias; Lang, Heinrich
    The bottom-up approach to replace existing devices by molecular-based systems is a subject that attracts permanently increasing interest. Molecular-based devices offer not only to miniaturize the device further, but also to benefit from advanced functionalities of deposited molecules. Furthermore, the molecules itself can be tailored to allow via their self-assembly the potential fabrication of devices with an application potential, which is still unforeseeable at this time. Herein, we review efforts to use discrete (metallo)porphyrins for the formation of (sub)monolayers by surface-confined polymerization, of monolayers formed by supramolecular recognition and of thin films formed by sublimation techniques. Selected physical properties of these systems are reported as well. The application potential of those ensembles of (metallo)porphyrins in materials science is discussed.
  • Item
    Tuning the magneto-optical response of TbPc2 single molecule magnets by the choice of the substrate
    (London [u.a.] : RSC, 2015) Robaschik, Peter; Fronk, Michael; Toader, Marius; Klyatskaya, Svetlana; Ganss, Fabian; Siles, Pablo F.; Schmidt, Oliver G.; Albrecht, Manfred; Hietschold, Michael; Ruben, Mario; Zahn, Dietrich R.T.; Salvan, Georgeta
    In this work, we investigated the magneto-optical response of thin films of TbPc2 on substrates which are relevant for (spin) organic field effect transistors (SiO2) or vertical spin valves (Co) in order to explore the possibility of implementing TbPc2 in magneto-electronic devices, the functionality of which includes optical reading. The optical and magneto-optical properties of TbPc2 thin films prepared by organic molecular beam deposition (OMBD) on silicon substrates covered with native oxide were investigated by variable angle spectroscopic ellipsometry (VASE) and magneto-optical Kerr effect (MOKE) spectroscopy at room temperature. The magneto-optical activity of the TbPc2 films can be significantly enhanced by one to two orders of magnitude upon changing the molecular orientation (from nearly standing molecules on SiO2/Si substrates to nearly lying molecules on perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA) templated SiO2/Si substrates) or by using metallic ferromagnetic substrates (Co).
  • Item
    Magnetooptical response of permalloy multilayer structures on different substrate in the IR-VIS-UV spectral range
    (Bristol : IOP Publ., 2019) Patra, Rajkumar; Mattheis, Roland; Stöcker, Hartmut; Monecke, Manuel; Salvan, Georgeta; Schäfer, Rudolf; Schmidt, Oliver G.; Schmidt, Heidemarie
    The magnetooptical (MO) response of Ru/Py/Ta thin film stacks with 4, 8, and 17 nm thick Ni81Fe19 permalloy (Py) films on a SiO2/Si and a ZnO substrate was measured by vector magnetooptical generalized ellipsometry. The MO response from VMOGE was modelled using a 4  ×  4 Mueller matrix algorithm. The wavelength-dependent, substrate-independent and thickness-independent complex MO coupling constant (Q) of Py in the Ru/Py/Ta thin film stacks was extracted by fitting Mueller matrix difference spectra in the spectral range from 300 nm to 1000 nm. Although the composition-dependent saturation magnetization of NixFe1−x alloys (x  =  0.0...1.0), e.g. of Ni81Fe19, is predictable from the two saturation magnetization end points, the MO coupling constant of NixFe1−x is not predictable from the two Q end points. However, in a small alloy range (0.0  <  x  <  0.2 and 0.8  <  x  <  1.0) the composition-dependent Q of NixFe1−x can be interpolated from a sufficiently high number of analyzed NixFe1−x alloys. The available complex MO coupling constants of six different NixFe1−x (x  =  1.0 to 0.0) alloys were used to interpolate MO response of binary NixFe1−x alloys in the range from x  =  0.0 to x  =  1.0.