Search Results

Now showing 1 - 2 of 2
  • Item
    Nanoimprint Lithography Facilitated Plasmonic-Photonic Coupling for Enhanced Photoconductivity and Photocatalysis
    (Weinheim : Wiley-VCH, 2021) Gupta, Vaibhav; Sarkar, Swagato; Aftenieva, Olha; Tsuda, Takuya; Kumar, Labeesh; Schletz, Daniel; Schultz, Johannes; Kiriy, Anton; Fery, Andreas; Vogel, Nicolas; König, Tobias A.F.
    Imprint lithography has emerged as a reliable, reproducible, and rapid method for patterning colloidal nanostructures. As a promising alternative to top-down lithographic approaches, the fabrication of nanodevices has thus become effective and straightforward. In this study, a fusion of interference lithography (IL) and nanosphere imprint lithography on various target substrates ranging from carbon film on transmission electron microscope grid to inorganic and dopable polymer semiconductor is reported. 1D plasmonic photonic crystals are printed with 75% yield on the centimeter scale using colloidal ink and an IL-produced polydimethylsiloxane stamp. Atomically smooth facet, single-crystalline, and monodisperse colloidal building blocks of gold (Au) nanoparticles are used to print 1D plasmonic grating on top of a titanium dioxide (TiO2) slab waveguide, producing waveguide-plasmon polariton modes with superior 10 nm spectral line-width. Plasmon-induced hot electrons are confirmed via two-terminal current measurements with increased photoresponsivity under guiding conditions. The fabricated hybrid structure with Au/TiO2 heterojunction enhances photocatalytic processes like degradation of methyl orange (MO) dye molecules using the generated hot electrons. This simple colloidal printing technique demonstrated on silicon, glass, Au film, and naphthalenediimide polymer thus marks an important milestone for large-scale implementation in optoelectronic devices. © 2021 The Authors. Advanced Functional Materials published by Wiley-VCH GmbH
  • Item
    Hybridized Guided-Mode Resonances via Colloidal Plasmonic Self-Assembled Grating
    (Washington, DC : Soc., 2019) Sarkar, Swagato; Gupta, Vaibhav; Kumar, Mohit; Schubert, Jonas; Probst, Patrick T.; Joseph, Joby; König, Tobias A.F.
    For many photonic applications, it is important to confine light of a specific wavelength at a certain volume of interest at low losses. So far, it is only possible to use the polarized light perpendicular to the solid grid lines to excite waveguide-plasmon polaritons in a waveguide-supported hybrid structure. In our work, we use a plasmonic grating fabricated by colloidal self-assembly and an ultrathin injection layer to guide the resonant modes selectively. We use gold nanoparticles self-assembled in a linear template on a titanium dioxide (TiO 2 ) layer to study the dispersion relation with conventional ultraviolet-visible-near-infrared spectroscopic methods. Supported with finite-difference in time-domain simulations, we identify the optical band gaps as hybridized modes: plasmonic and photonic resonances. Compared to metallic grids, the observation range of hybridized guided modes can now be extended to modes along the nanoparticle chain lines. With future applications in energy conversion and optical filters employing these cost-efficient and upscalable directed self-assembly methods, we discuss also the application in refractive index sensing of the particle-based hybridized guided modes. Copyright © 2019 American Chemical Society.